MHB Question related to inverse sine functions

AI Thread Summary
The discussion revolves around the differences in results from two cases involving the inverse sine function. Case 1 yields -π/3, while Case 2 results in π/3, leading to confusion about which is correct. The key point is that the inverse sine function, arcsin(x), is defined only within the range of -π/2 to π/2, which affects the outputs. Ignoring this restriction can lead to incorrect conclusions. Understanding the domain of the arcsin function is crucial for determining the correct answer.
gsn57iaf
Messages
2
Reaction score
0
Please guide why answers are different in following
two cases and which one is correct?
Case 1. sin-1 ( – 1/2 ) – sin-1 (– 1) = 7π/6 – 3π/2 = – π/3
Case 2. sin-1 ( – 1/2 ) – sin-1 (– 1)
= – sin-1 ( 1/2 ) + sin-1 (1)

= – π/6 + π/2 = π/3
 
Mathematics news on Phys.org
gsn57iaf said:
Please guide why answers are different in following
two cases and which one is correct?
Case 1. sin-1 ( – 1/2 ) – sin-1 (– 1) = 7π/6 – 3π/2 = – π/3
Case 2. sin-1 ( – 1/2 ) – sin-1 (– 1)
= – sin-1 ( 1/2 ) + sin-1 (1)

= – π/6 + π/2 = π/3

In order to have an inverse function, a function needs to be one-to-one on its domain. As $\displaystyle \begin{align*} y = \sin{(x)} \end{align*}$ is not, its domain is restricted. By convention, the domain chosen is $\displaystyle \begin{align*} -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \end{align*}$. That means that the inverse sine function is defined to give an output restricted to $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$. So with this knowledge, which one do you think gives the correct answer?
 
Prove It said:
In order to have an inverse function, a function needs to be one-to-one on its domain. As $\displaystyle \begin{align*} y = \sin{(x)} \end{align*}$ is not, its domain is restricted. By convention, the domain chosen is $\displaystyle \begin{align*} -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \end{align*}$. That means that the inverse sine function is defined to give an output restricted to $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$. So with this knowledge, which one do you think gives the correct answer?

Thanks sir. The key $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$ I ignored in search of answer.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top