- #1
Buzz Bloom
Gold Member
- 2,519
- 467
- TL;DR Summary
- Do the average observable charateristics, within a determined angular area of the CBR, demonstrate approximate isotropy of our universe?
What does this imply about possible topological shapes for our universe?i
That is, is there a angular circle size which is approximately in all directions statistically the same with respect to its CBR temperature variation contents (after an adjustment for the veocity of the Earth in some specific direction)?
If the answer to the above question is "Yes", is this result sufficient evidence surporting the assumption that our universe is isotropic?
If this is correct, is it adequate evidence that our universe cannot have a toroidal shape? The argument that comes to mind is that a hyper-torus can be represented as a cube with opposite faces identified. It has a continuous translation symmetry, but no continuous rotation symmetry. It is not isotropic becasue it is possible to have straight lines from a chosen origin that returns to itself with different angles relative the six parallel surfaces, AND such different paths will NOT be the same length.
If the answer to the above question is "Yes", is this result sufficient evidence surporting the assumption that our universe is isotropic?
If this is correct, is it adequate evidence that our universe cannot have a toroidal shape? The argument that comes to mind is that a hyper-torus can be represented as a cube with opposite faces identified. It has a continuous translation symmetry, but no continuous rotation symmetry. It is not isotropic becasue it is possible to have straight lines from a chosen origin that returns to itself with different angles relative the six parallel surfaces, AND such different paths will NOT be the same length.