Questions from Peskin & Schroeder 5.5 about Compton Scattering

In summary, the conversation discusses the Compton scattering calculation in P&S and the evaluation of the corresponding amplitude. The questioner is confused about the argument that the final photon must be right-handed in order for the amplitude to not vanish. They provide their own calculations and ask for clarification on their approach.They also mention a question about Figure 5.6 in P&S and ask for help in understanding how the minus sign in the second expression in (5.32) is derived. They provide their own calculations for this as well and ask for an explanation for the minus sign.
  • #1
Wan
3
0
Hi! Just a couple questions on the Compton scattering calculation in P&S. I feel like I'm missing something very simple here but can't quite figure out what it is. On page 166, the amplitude to be evaluated is
$$ i\mathcal M = -ie^2 \epsilon_\mu(k)\epsilon^*_\nu(k^\prime) u_R^\dagger(p^\prime) \sigma^\mu \frac{\overline \sigma \cdot (p-k^\prime)}{-(\omega^2\chi^2+m^2)}\sigma^\nu u_R(p),$$ where ## u_R(p) = \sqrt{2E}(0, 1)^T## and ##u_R(p^\prime) = \sqrt{2E}(1, 0)^T.## P&S argue that the final photon should be right handed otherwise the amplitude vanishes but I don't quite get that. I presumed that if the final photon is right handed then ##\epsilon^\nu = 1/\sqrt{2}(0,1,i,0)^T##, so ##\epsilon_\nu = 1/\sqrt{2}(0,-1,-i,0)^T## and ##\epsilon_\nu^* = (0, -1, i, 0)^T##, then we would have
$$
\sigma^\nu \epsilon_\nu^* = \frac{1}{\sqrt{2}} \bigg[\begin{pmatrix}
0 & 1\\
1 & 0\end{pmatrix} (-1) + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} i\bigg] = \begin{pmatrix} 0 & 0 \\ -\sqrt{2} & 0 \end{pmatrix},
$$
But then ##\sigma^\nu \epsilon_\nu^*u_R(p) = \begin{pmatrix} 0 & 0 \\ -\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0##. What did I do wrong?

Also with Figure 5.6 on the next page, I have pretty much the same question as this guy in StackExchange https://physics.stackexchange.com/questions/390121/spin-vs-helicity-conservation, unfortunately no one gave him an answer yet. My understanding is that, before the collision, we have spin/helicity of the photon = 1, spin of electron -1/2; and after the collision we have helicity of the photon = -1, and spin of electron 1/2, therefore one unit of spin is exchanged, is that correct? Any help is appreciated. Thanks!
 
Physics news on Phys.org
  • #2
Welp, I wonder why there are no replies. I'll just use this opportunity to ask one more question, anyone knows how the minus sign in the second expression in (5.32) come about? For ## M(e_R^-e_L^+ \rightarrow \mu_L^-\mu_R^+) ## I have it equals to ## \overline v(p^\prime) \gamma^\mu u(p) \cdot \overline u(k) \gamma_\mu v(k^\prime) ## where ## \overline v(p^\prime) \gamma^\mu u(p) = -2E(0,1,i,0) ## (equation (5.29) which describes ##e_R^- e_L^+##) and ## \overline u(k) \gamma_\mu v(k^\prime) = -2E(0,-\cos\theta, -i, \sin\theta) ## (the equation above (5.32) describing ## \mu_L^- \mu_R^+ ##. When I dot them together I got ## M = e^2 (1-\cos\theta)##, without the minus sign. Same thing happens to ## M(e_L^-e_R^+ \rightarrow \mu_R^- \mu_L^+) ##. Where does the minus come from? Many thanks.
 

FAQ: Questions from Peskin & Schroeder 5.5 about Compton Scattering

1. What is Compton scattering?

Compton scattering is a phenomenon in which an incoming photon collides with a free charged particle, such as an electron, and transfers some of its energy to the particle. This results in a scattered photon with a longer wavelength and a recoiling electron with higher energy.

2. What is the significance of Compton scattering in physics?

Compton scattering played a crucial role in the development of quantum mechanics and the understanding of the nature of light as both a particle and a wave. It also has practical applications in fields such as medical imaging and materials science.

3. How is the energy and momentum conservation applied in Compton scattering?

In Compton scattering, the total energy and momentum of the system (photon and electron) must be conserved before and after the collision. This is described by the Compton scattering formula, which relates the change in wavelength of the scattered photon to the initial and final energies of the electron.

4. What is the difference between elastic and inelastic Compton scattering?

Elastic Compton scattering refers to a collision in which the scattered photon has the same energy and wavelength as the initial photon. Inelastic Compton scattering, on the other hand, results in a scattered photon with a different energy and wavelength due to energy transfer to the electron.

5. How is Compton scattering used in experimental techniques?

Compton scattering is used in various experimental techniques, such as X-ray diffraction and Compton imaging, to study the structure and properties of materials. It is also used in medical imaging techniques, such as Computed Tomography (CT), to produce detailed images of the human body.

Back
Top