- #1
tc903
- 19
- 0
Hi,
I tried rationalizing the first one but I get zero.
\[\lim_{x\to 3}\frac{\sqrt{19-x}-4}{\sqrt{28-x}-5}\]
\[\lim_{x\to 3}\frac{-x-3}{(\sqrt{28-x}-5)(\sqrt{19-x}+4)}\]
Here is my next question.
\[\lim_{x\to 0^{-}}\left(\frac{3}{x}-\frac{3}{|x|}\right)\]
\(\displaystyle f(x)=\begin{cases}-x, & x<0 \\[3pt] x, & 0\le x \\ \end{cases}\)
\[\lim_{x\to 0^{-}}\frac{6}{x}\]
I will post a picture of this later if the $\LaTeX$ didn't work.
I tried rationalizing the first one but I get zero.
\[\lim_{x\to 3}\frac{\sqrt{19-x}-4}{\sqrt{28-x}-5}\]
\[\lim_{x\to 3}\frac{-x-3}{(\sqrt{28-x}-5)(\sqrt{19-x}+4)}\]
Here is my next question.
\[\lim_{x\to 0^{-}}\left(\frac{3}{x}-\frac{3}{|x|}\right)\]
\(\displaystyle f(x)=\begin{cases}-x, & x<0 \\[3pt] x, & 0\le x \\ \end{cases}\)
\[\lim_{x\to 0^{-}}\frac{6}{x}\]
I will post a picture of this later if the $\LaTeX$ didn't work.
Last edited by a moderator: