- #1
MathematicalPhysicist
Gold Member
- 4,699
- 373
1)the function f(x) satisfies: f(x+y)=f(x)f(y)
for every x,y>0.
prove that if f(x) is differentiable then f(x)=0 or f(x)=e^(ax).
2)prove that if f(x) is differnetiable and satisfies f(xy)=f(x)+f(y)
for every x,y>0 then: f(x)=alnx.
in the first one i tried to put x=y, and then getting:
f(2x)=f^2(x), f'(2x)*2=2f(x)*x'
which means f'(2x)=f(x)
which happens when f'(2x)=(e^(2x)'/2
therefore f(x)=e^(2x) or if we want to generalise:
y=a
f(ax)=f(x)f(a)
a*f'(ax)=f'(x)f(a)+f(x)f'a)
f(x)=(af'(ax)-f'(x)f(a))/f'(a)
but how do i go out from here?
thanks in advance.
for every x,y>0.
prove that if f(x) is differentiable then f(x)=0 or f(x)=e^(ax).
2)prove that if f(x) is differnetiable and satisfies f(xy)=f(x)+f(y)
for every x,y>0 then: f(x)=alnx.
in the first one i tried to put x=y, and then getting:
f(2x)=f^2(x), f'(2x)*2=2f(x)*x'
which means f'(2x)=f(x)
which happens when f'(2x)=(e^(2x)'/2
therefore f(x)=e^(2x) or if we want to generalise:
y=a
f(ax)=f(x)f(a)
a*f'(ax)=f'(x)f(a)+f(x)f'a)
f(x)=(af'(ax)-f'(x)f(a))/f'(a)
but how do i go out from here?
thanks in advance.