- #1
bomba923
- 763
- 0
Quite Curious
[tex] \begin{gathered}
\sum\limits_{i = 1}^n i = \frac{{n\left( {n + 1} \right)}}
{2} \hfill \\
\sum\limits_{i = 1}^n {i^2 } = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}
{6} \hfill \\
\sum\limits_{i = 1}^n {i^3 } = \frac{{n^2 \left( {n + 1} \right)^2 }}
{4} \hfill \\
\vdots \hfill \\
\left( {etc} \right) \hfill \\
\end{gathered} [/tex]
------------------------------------------------
But in general,
[tex] \forall k \in \mathbb{N} , [/tex]
what is the general summation formula for
[tex] \sum\limits_{i = 1}^n {i^k } \; {?} [/tex]
[tex] \begin{gathered}
\sum\limits_{i = 1}^n i = \frac{{n\left( {n + 1} \right)}}
{2} \hfill \\
\sum\limits_{i = 1}^n {i^2 } = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}
{6} \hfill \\
\sum\limits_{i = 1}^n {i^3 } = \frac{{n^2 \left( {n + 1} \right)^2 }}
{4} \hfill \\
\vdots \hfill \\
\left( {etc} \right) \hfill \\
\end{gathered} [/tex]
------------------------------------------------
But in general,
[tex] \forall k \in \mathbb{N} , [/tex]
what is the general summation formula for
[tex] \sum\limits_{i = 1}^n {i^k } \; {?} [/tex]
Last edited: