Quick Microwave Optics question - Malus' Law

In summary, the author is trying to determine Io (the initial intensity of the microwave transmitter) and is having trouble getting accurate results. After graphing his data and comparing it to what he was told, he realizes there is a discrepancy. He is unsure what is wrong and asks for help.
  • #1
satchmo05
114
0

Homework Statement


I am needing to check my results against Malus' Law --> [I = Iocos2(theta)]

I am unsure how to get Io. So I have found my signal readings on the microwave detector and I know the angle that I rotated the microwave transmitter. I experimentally know the relationship between my signal reading and signal intensity. I just don't know how to verify my results with Malus' Law - meaning what is Io?


Homework Equations


My signal-intensity relationship --> I = S1.396648
Malus' Law --> I = Iocos2(theta)


The Attempt at a Solution



So I know my set (12 values) of converted intensities and I know my 12 values of theta, so the only thing I don't know is the initial intensity, Io. Is this something that is a specification of the device or is this experimental? Please let me know how to determine Io. Thank you in advance for all help!
 
Physics news on Phys.org
  • #2
If you find that the plot of your I vs. [tex]\cos^2\theta[/tex] values is linear, with zero intercept (within experimental uncertainties), then [tex]I_0[/tex] is the slope. Alternatively, you would have made a measurement at [tex]\theta=0[/tex] and used the slope of the graph as a consistency check.
 
  • #3
So your first suggestion did not end up working unfortunately. When I graph my data of I against cos2(theta), I get a scatter plot shape similar to that of a logarithmic. In regards to your second suggestion, I don't think that would work either. Yes, I did make a measurement at theta = 0 [deg] (I made signal reading measurements from 0 - 85 [deg] in increments of 5 [deg]), but I wouldn't see the relation in doing that...
 
  • #4
What is cosθ, when θ is 0°?

And by extension, I = ____?
 
  • #5
Ah, so the cos(theta) simply makes I a fraction of Io?
 
  • #6
satchmo05 said:
Ah, so the cos(theta) simply makes I a fraction of Io?
Yes.

EDIT
Yes, if you mean cos2θ
 
  • #7
I definitely understand where you're coming from. However, after creating an equation that relates my signal readings (in [mA]) and my intensities (in [W/m^2]), that equation ends up being S^1.396648. After comparing my results with what you just stated, I am not getting similar results (as I should be). What is wrong here? Thanks again.
 

FAQ: Quick Microwave Optics question - Malus' Law

What is Malus' Law?

Malus' Law, also known as the Law of Polarization, is a fundamental principle of optics that describes the relationship between the intensity of light passing through a polarizer and the angle of the polarizer with respect to the incident light.

How does Malus' Law apply to microwave optics?

The principles of Malus' Law can be applied to microwave optics, as microwaves are a form of electromagnetic radiation. The law states that the intensity of polarized light passing through a polarizer is directly proportional to the square of the cosine of the angle between the polarizer and the incident light. This relationship can also be observed in microwave polarization experiments.

What is the equation for Malus' Law?

The equation for Malus' Law is I = I0 cos2θ, where I is the intensity of light after passing through a polarizer, I0 is the initial intensity of the incident light, and θ is the angle between the polarizer and the incident light.

How is Malus' Law used in practical applications?

Malus' Law is commonly used in polarimetry, which is the measurement and analysis of the polarization of light. It is also used in various optical instruments, such as polarizers and polarizing filters, which are used in cameras, LCD screens, and other devices to control the polarization of light.

What are some limitations of Malus' Law?

Malus' Law assumes that the incident light is monochromatic (single wavelength) and that the polarizer is ideal (completely blocking all light perpendicular to its axis). In real-world situations, these assumptions may not hold true, leading to deviations from the predicted results. Additionally, Malus' Law does not take into account the effects of multiple reflections or scattering, which can also affect the observed intensity of light passing through a polarizer.

Similar threads

Back
Top