- #1
Tony1
- 17
- 0
Given that,
How to show that,
$$\int_{0}^{\infty}{\cos(\pi x^2)\over {1\over 2}+\cosh\left({x\pi\over \sqrt{3}}\right)}\mathrm dx=\sin\left(\pi\over 12\right)$$
How to show that,
$$\int_{0}^{\infty}{\cos(\pi x^2)\over {1\over 2}+\cosh\left({x\pi\over \sqrt{3}}\right)}\mathrm dx=\sin\left(\pi\over 12\right)$$