- #1
Fantini
Gold Member
MHB
- 268
- 0
Good afternoon! Along the same lines as the other, here is the question:
Show that the quotient ring of a field is either the trivial one or is isomorphic to the field.
My answer: Let $N$ be an ideal of the field $F$. Assume that $N \neq \{ 0 \}$. Consider the homomorphism $\phi: F \to F / N$ defined by $\phi(a) = a + N$. If we show that it is one-to-one and onto we are done. It is clearly surjective, thus all that is left is to show injectivity. If $a \neq b$ then we will have $a + N \neq b + N$, but this is none other than $\phi(a) \neq \phi(b)$.
Thanks for all help! (Yes)
Show that the quotient ring of a field is either the trivial one or is isomorphic to the field.
My answer: Let $N$ be an ideal of the field $F$. Assume that $N \neq \{ 0 \}$. Consider the homomorphism $\phi: F \to F / N$ defined by $\phi(a) = a + N$. If we show that it is one-to-one and onto we are done. It is clearly surjective, thus all that is left is to show injectivity. If $a \neq b$ then we will have $a + N \neq b + N$, but this is none other than $\phi(a) \neq \phi(b)$.
Thanks for all help! (Yes)