- #1
bergausstein
- 191
- 0
can you tell me if there's a necessity to use the definition:
$\displaystyle \sqrt{x^2}=|x|$
to this,
$\displaystyle \sqrt{(x+y)^2}$
if yes, why? if not why?
and how it is different to
$\displaystyle \left(\sqrt{(x+y)}\right)^2$
thanks!
$\displaystyle \sqrt{x^2}=|x|$
to this,
$\displaystyle \sqrt{(x+y)^2}$
if yes, why? if not why?
and how it is different to
$\displaystyle \left(\sqrt{(x+y)}\right)^2$
thanks!
Last edited: