Radii of stacked circles inside the graph of y = |x|^1.5

In summary, the conversation involves a discussion about finding the limit of a particular expression involving geometric arguments. The question is to use a geometrical argument to solve the problem, and the conversation explores different approaches to this problem. One method involves using rationalization, while another involves proving a separate limit and then using it to solve the original problem. Ultimately, the conversation leads to the conclusion that the limit is equal to 3, but there is some uncertainty about this result due to the inclusion of small values of r.
  • #1
songoku
2,366
347
Homework Statement
Please see below
Relevant Equations
Not sure
1684204234937.png

1684204371854.png
(a) The hint from question is to used geometrical argument. From the graph, I can see ##r_1+r_2=c_2-c_1## but I doubt it will be usefule since the limit is ##\frac{r_2}{r_1} \rightarrow 1##, not in term of ##c##.

I also tried to calculate the limit directly (not using geometrical argument at all).

$$\lim_{\frac{r_2}{r_1} \rightarrow 1} \left(\frac{r_1+r_2}{{r_2}^{1.5}-{r_1}^{1.5}}\right)$$
$$=\lim_{\frac{r_2}{r_1} \rightarrow 1} \left(\frac{1+\frac{r_2}{r_1}}{\frac{{r_2}^{1.5}}{r_1}-{r_1}^{0.5}}\right)$$

Then got stuck

I also tried rationalization:
$$\lim_{\frac{r_2}{r_1} \rightarrow 1} \left(\frac{r_1+r_2}{{r_2}^{1.5}-{r_1}^{1.5}}\right) \times \frac{{r_2}^{1.5}+{r_1}^{1.5}}{{r_2}^{1.5}+{r_1}^{1.5}}$$
$$=\lim_{\frac{r_2}{r_1} \rightarrow 1} \left(\frac{(r_1+r_2)({r_2}^{1.5}+{r_1}^{1.5})}{{r_2}^{3}-{r_1}^{3}}\right)$$
$$=\lim_{\frac{r_2}{r_1} \rightarrow 1} \left(\frac{(r_1+r_2)({r_2}^{1.5}+{r_1}^{1.5})}{(r_2-r_1)({r_2}^{2}+r_1 r_2+{r_1}^{2}})\right)$$

Then stuck again

Please give me hint, especially how to use geometrical argument.

Thanks
 
Physics news on Phys.org
  • #2
##r_2/r_1 \rightarrow 1## is realized when ##r_1,r_2 \rightarrow +\infty## where the curve is almost vertical and the center-center distance on y axis is
[tex]r_1+r_2 \approx r_2^{1.5}-r_1^{1.5}[/tex]
 
  • Like
Likes songoku
  • #3
anuttarasammyak said:
##r_2/r_1 \rightarrow 1## is realized when ##r_1,r_2 \rightarrow +\infty## where the curve is almost vertical and the center-center distance on y axis is
[tex]r_1+r_2 \approx r_2^{1.5}-r_1^{1.5}[/tex]
I understand.

For (b), I again tried rationalization but stuck. Do we also use geometrical argument to solve (b)?

Thanks
 
  • #4
It seems to work that
[tex]r_2^{1.5}-r_1^{1.5}=\sqrt{r_2}^3-\sqrt{r_1}^3=(\sqrt{r_2}-\sqrt{r_1})(r_2+r_1+\sqrt{r_2r_1})[/tex]
 
  • Like
Likes songoku
  • #5
Hint:

Show that ##\displaystyle{\lim_{n \to \infty}\dfrac{r_{n+1}}{r_n}}=1## in case ##(c)## is true so that we can use the formula in ##(c)## instead.

Then show ##(c) \Longrightarrow (b) \Longrightarrow (a)## so we only have to prove ##(c)##.

Do you know any methods to prove ##(c)##?

Edit: I get ##3## as the limit in ##(a)##.
 
Last edited:
  • Like
Likes songoku
  • #6
fresh_42 said:
Edit: I get ##3## as the limit in ##(a)##.
But using method in post#2, the answer is 1

fresh_42 said:
Hint:

Show that ##\displaystyle{\lim_{n \to \infty}\dfrac{r_{n+1}}{r_n}}=1## in case ##(c)## is true so that we can use the formula in ##(c)## instead.

Then show ##(c) \Longrightarrow (b) \Longrightarrow (a)## so we only have to prove ##(c)##.

Do you know any methods to prove ##(c)##?
Actually, I tried to prove (c) by using (b):

##\lim_{\frac{r_2}{r_1} \rightarrow 1}## is the same as saying ##r_2## and ##r_1## are large so for large value of ##r##, ##\sqrt{r_2}-\sqrt{r_1}\approx \frac{2}{3}##

Then I changed it into:
$$\sqrt{r_{n+1}}-\sqrt{r_n}\approx \frac{2}{3}$$
$$r_{n+1}\approx \left(\frac{2}{3}+\sqrt{r_n}\right)^2$$
$$r_{n}\approx \left(\frac{2}{3}+\sqrt{r_{n-1}}\right)^2$$

Then I don't know what to do to get (c)
 
  • #7
songoku said:
But using method in post#2, the answer is 1
This isn't a method. It's a heuristic at best. I get with the use of ##(c)## and for the sake of less typing with ##x=r_n## and ##y=r_{n+1}##
\begin{align*}
\dfrac{y+x}{y\sqrt{y}-x\sqrt{x}}&=\dfrac{y+x}{(y+x)(\sqrt{y}-\sqrt{x})-x\sqrt{y}+y\sqrt{x}}\\[6pt]
&=\dfrac{1}{(\sqrt{y}-\sqrt{x})- \dfrac{x}{y+x}\sqrt{y}+\dfrac{y}{y+x}\sqrt{x}}\\[6pt]
&\stackrel{(y/x)\to 1}{\longrightarrow }\dfrac{1}{\sqrt{y}-\sqrt{x}-(1/2)\sqrt{y}+(1/2)\sqrt{x}}\\[6pt]
&\stackrel{(y/x)\to 1}{\longrightarrow }2\dfrac{1}{\sqrt{y}-\sqrt{x}}\stackrel{(y/x)\to 1}{\longrightarrow }3
\end{align*}
Not sure whether I made a mistake.

songoku said:
Actually, I tried to prove (c) by using (b):

##\lim_{\frac{r_2}{r_1} \rightarrow 1}## is the same as saying ##r_2## and ##r_1## are large so for large value of ##r##, ##\sqrt{r_2}-\sqrt{r_1}\approx \frac{2}{3}##

Then I changed it into:
$$\sqrt{r_{n+1}}-\sqrt{r_n}\approx \frac{2}{3}$$
$$r_{n+1}\approx \left(\frac{2}{3}+\sqrt{r_n}\right)^2$$
$$r_{n}\approx \left(\frac{2}{3}+\sqrt{r_{n-1}}\right)^2$$

Then I don't know what to do to get (c)
That doesn't work that way.

##(b)## is also easy with ##(c)##:
\begin{align*}
\lim_{n \to \infty}\left(\sqrt{r_{n+1}}-\sqrt{r_n}\right)&=\lim_{n \to \infty}\left(\dfrac{2}{3}(n-1)+\dfrac{2}{3}+\sqrt{r_1}-\dfrac{2}{3}(n-1)-\sqrt{r_1}\right)=\dfrac{2}{3}
\end{align*}
So it remains to show that ##\lim_{n \to \infty}\left(\sqrt{r_{n+1}}-\sqrt{r_n}\right)=\lim_{(r_2/r_1) \to 1}\left(\sqrt{r_{2}}-\sqrt{r_1}\right).## As I understand the limit on the right, they are the same. But maybe that is my mistake. What does ##r_2/r_1 \longrightarrow 1## mean? ##r_2## is a function of ##r_1## isn't it, so they are not independent.
 
  • Like
Likes songoku
  • #8
fresh_42 said:
This isn't a method. It's a heuristic at best. I get with the use of (c) and for the sake of less typing with x=rn and y=rn+1
y+xyy−xx=y+x(y+x)(y−x)−xy+yx=1(y−x)−xy+xy+yy+xx⟶(y/x)→11y−x−(1/2)y+(1/2)x⟶(y/x)→121y−x⟶(y/x)→13
Not sure whether I made a mistake.
I tried it a different way referring my post #4
[tex]\frac{y+x}{y^{1.5}-x^{1.5}}=(\sqrt{y/x}-1)^{-1}\sqrt{x}^{-1}(1+\frac{\sqrt{y/x}}{1+y/x})^{-1}[/tex]
In the limit RHS first coefficient goes to infinity, the second goes to zero because geometry requires x ##\rightarrow \infty## to pursuit the limit, and the third goes to 2/3.
 
  • Like
Likes songoku and fresh_42
  • #9
From geometry I observe
Relation of t >0 and r, evaluating line equation and length of r,
[tex]t=-\frac{2}{9}+\sqrt{\frac{4}{81}+r^2}[/tex]
Recurrence formula with t from ##c_2-c_1=r_1+r_2##
[tex]c_2-r_2=c_1+r_1[/tex]thus
[tex]3t_{n+1}^{3/2}-\sqrt{13}t_{n+1}+6t_{n+1}^{1/2}=3t_{n}^{3/2}+\sqrt{13}t_{n}+6t_{n}^{1/2}[/tex]
if I do not make mistakes.
1684327783625.png
 
Last edited:
  • Like
Likes songoku
  • #10
anuttarasammyak said:
I tried it a different way referring my post #4
[tex]\frac{y+x}{y^{1.5}-x^{1.5}}=(\sqrt{y/x}-1)^{-1}\sqrt{x}^{-1}(1+\frac{\sqrt{y/x}}{1+y/x})^{-1}[/tex]
In the limit RHS first coefficient goes to infinity, the second goes to zero because geometry requires x ##\rightarrow \infty## to pursuit the limit, and the third goes to 2/3.
I think the problem is not in post#4 but post#2 because @fresh_42 got 3 (which is also different from question). I follow his working and it also makes sense.

fresh_42 said:
That doesn't work that way.

##(b)## is also easy with ##(c)##:
\begin{align*}
\lim_{n \to \infty}\left(\sqrt{r_{n+1}}-\sqrt{r_n}\right)&=\lim_{n \to \infty}\left(\dfrac{2}{3}(n-1)+\dfrac{2}{3}+\sqrt{r_1}-\dfrac{2}{3}(n-1)-\sqrt{r_1}\right)=\dfrac{2}{3}
\end{align*}
So it remains to show that ##\lim_{n \to \infty}\left(\sqrt{r_{n+1}}-\sqrt{r_n}\right)=\lim_{(r_2/r_1) \to 1}\left(\sqrt{r_{2}}-\sqrt{r_1}\right).## As I understand the limit on the right, they are the same. But maybe that is my mistake. What does ##r_2/r_1 \longrightarrow 1## mean? ##r_2## is a function of ##r_1## isn't it, so they are not independent.
I got (c) but not sure whether my method is valid. I used something like telescoping

$$\sqrt{r_n}-\sqrt{r_{n-1}}=\frac{2}{3}$$
$$\sqrt{r_{n-1}}-\sqrt{r_{n-2}}=\frac{2}{3}$$
$$\sqrt{r_{n-2}}-\sqrt{r_{n-3}}=\frac{2}{3}$$
$$.$$
$$\sqrt{r_2}-\sqrt{r_1}=\frac{2}{3}$$

Adding all the above:
$$\sqrt{r_n}-\sqrt{r_1}=\frac{2}{3}(n-1)$$
$$r_n=\left(\frac{2}{3}(n-1)+\sqrt{r_1} \right)^2$$

But the question states "for large r" while I also included small r so I am not sure
 
  • #11
songoku said:
I think the problem is not in post#4 but post#2 because @fresh_42 got 3 (which is also different from question). I follow his working and it also makes sense.
The fraction, thanks to post #7
1684457893933.png
[tex]=\sqrt{x}^{-1} \frac{1+a}{a\sqrt{a}-1}[/tex]
[tex]=\sqrt{x}^{-1} \frac{1+a}{(\sqrt{a}-1)(a+\sqrt{a}+1)}[/tex] or
[tex]=(\sqrt{y}-\sqrt{x})^{-1} \frac{1+a}{a+\sqrt{a}+1}[/tex]
where
[tex]a=\frac{y}{x}[/tex]
Say the fraction has limit c for a ##\rightarrow## 1
[tex]\sqrt{y}-\sqrt{x}\ \ \rightarrow \ \frac{2}{3c}[/tex]
 
  • Like
Likes songoku

FAQ: Radii of stacked circles inside the graph of y = |x|^1.5

What is the general shape of the graph of y = |x|^1.5?

The graph of y = |x|^1.5 is a symmetric curve that opens upward and is steeper than a parabola y = x^2 near the origin but flattens out more as x moves away from the origin. It has a vertex at the origin (0,0).

How do you determine the radius of a circle that can fit inside the graph of y = |x|^1.5?

The radius of a circle that can fit inside the graph of y = |x|^1.5 depends on the vertical distance between the point of tangency on the curve and the x-axis. Mathematically, it involves solving for the maximum radius such that the circle remains entirely within the bounds of the graph, taking into account the slope of the curve at the point of tangency.

Can multiple circles of different radii be stacked inside the graph of y = |x|^1.5?

Yes, multiple circles of different radii can be stacked inside the graph of y = |x|^1.5. The radii of these circles will generally decrease as you move up the y-axis because the width of the graph narrows as y increases.

What is the mathematical approach to finding the largest possible circle that fits at a given height inside the graph of y = |x|^1.5?

The mathematical approach involves finding the intersection points of the circle and the curve y = |x|^1.5 at a given height. This requires solving the equation of the circle in conjunction with the equation y = |x|^1.5 to ensure the circle is tangent to the curve at that height.

Are there any constraints or limitations on the radii of the circles that can fit inside the graph of y = |x|^1.5?

Yes, the primary constraint is that the radius of each circle must be such that the entire circle lies within the bounds of the graph y = |x|^1.5. As you move higher up the y-axis, the maximum allowable radius decreases because the width of the region defined by the graph narrows.

Similar threads

Replies
4
Views
2K
Replies
2
Views
1K
Replies
11
Views
1K
Replies
8
Views
2K
Replies
8
Views
1K
Replies
12
Views
2K
Replies
1
Views
33K
Replies
12
Views
1K
Back
Top