- #1
cianfa72
- 2,475
- 255
- TL;DR Summary
- Rules to raise or lower indices through metric tensor
I'm still confused about the notation used for operations involving tensors.
Consider the following simple example:
$$\eta^{\mu \sigma} A_{\mu \nu} = A_{\mu \nu} \eta^{\mu \sigma}$$
Using the rules for raising an index through the (inverse) metric tensor ##\eta^{\mu \sigma}## we get ##A^{\sigma}{}_{\nu}##. However if we work out explicitly the contraction employing the operator ##C_{\alpha}^{\mu} ()## we get:
$$C_{\alpha}^{\mu} (A_{\alpha \nu} \eta^{\mu \sigma} e^{\alpha} \otimes e^{\nu} \otimes e_{\mu} \otimes e_{\sigma}) = A_{\mu \nu} \eta^{\mu \sigma} e^{\mu} (e_{\mu}) e^{\nu} \otimes e_{\sigma} = A_{\mu \nu} \eta^{\mu \sigma} e^{\nu} \otimes e_{\sigma}$$
The latter is a tensor, say ##T = T_{\nu} {}^{\sigma} e^{\nu} \otimes e_{\sigma}##.
Is it the same as ##A^{\sigma}{}_{\nu} e_{\sigma} \otimes e^{\nu}## ?
Consider the following simple example:
$$\eta^{\mu \sigma} A_{\mu \nu} = A_{\mu \nu} \eta^{\mu \sigma}$$
Using the rules for raising an index through the (inverse) metric tensor ##\eta^{\mu \sigma}## we get ##A^{\sigma}{}_{\nu}##. However if we work out explicitly the contraction employing the operator ##C_{\alpha}^{\mu} ()## we get:
$$C_{\alpha}^{\mu} (A_{\alpha \nu} \eta^{\mu \sigma} e^{\alpha} \otimes e^{\nu} \otimes e_{\mu} \otimes e_{\sigma}) = A_{\mu \nu} \eta^{\mu \sigma} e^{\mu} (e_{\mu}) e^{\nu} \otimes e_{\sigma} = A_{\mu \nu} \eta^{\mu \sigma} e^{\nu} \otimes e_{\sigma}$$
The latter is a tensor, say ##T = T_{\nu} {}^{\sigma} e^{\nu} \otimes e_{\sigma}##.
Is it the same as ##A^{\sigma}{}_{\nu} e_{\sigma} \otimes e^{\nu}## ?
Last edited: