MHB Raj's integration questions via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Integration
AI Thread Summary
The discussion focuses on finding the areas enclosed by two pairs of functions. The first area, between the curves y = 6 - x² and y = 3 - 2x, is calculated to be 32/3 square units. The second area, between the semicircle y = √(4 - x²) and the line y = x + 2, results in an area of (π - 2) square units. The importance of showing step-by-step calculations is emphasized for educational purposes. Overall, the thread highlights the methods for determining areas between curves using integration.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
1. Find the area enclosed between $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ and $\displaystyle \begin{align*} y = 3 - 2\,x \end{align*}$.

2. Find the area enclosed between $\displaystyle \begin{align*} y = \sqrt{4 - x^2} \end{align*}$ and the line $\displaystyle \begin{align*} x - y + 2 = 0 \end{align*}$.

1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
Your steps are correct! In addition to this i would always require my students to show step-step working to solution...in general they ought to start with formula for finding Area bound by given functions i.e ##A=\int_a^b f(x) dx## ...before plugging in the values.
 
  • Like
Likes Greg Bernhardt
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
11K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
1
Views
11K
Replies
1
Views
5K
Replies
2
Views
11K
Back
Top