- #1
Francobati
- 20
- 0
Hello. Can you help me solve it? ($F$ is a $\sigma $ algebra).
Let $X$ be a rv over $(\Omega ,F,P)$. Set $Y:= min\left \{ 1,X \right \}$. What statement is TRUE?
(1): $\left \{ Y=X \right \}\neq \Omega $;
(2): $F_Y(x)=F_X(x)$ for every $x\epsilon \Re $;
(3): $Y\leqslant X$ for every outcome;
(4): $E(Y)=\int_{-\infty}^1xd F_{X}(x)$;
(5): $E(Y)=\int_{\Re }max\left \{ 1,x \right \}d F_{X}(x)$.
Let $X$ be a rv over $(\Omega ,F,P)$. Set $Y:= min\left \{ 1,X \right \}$. What statement is TRUE?
(1): $\left \{ Y=X \right \}\neq \Omega $;
(2): $F_Y(x)=F_X(x)$ for every $x\epsilon \Re $;
(3): $Y\leqslant X$ for every outcome;
(4): $E(Y)=\int_{-\infty}^1xd F_{X}(x)$;
(5): $E(Y)=\int_{\Re }max\left \{ 1,x \right \}d F_{X}(x)$.