- #1
tmt1
- 234
- 0
Supposing I have this expression:
$$\sum_{n = 1}^{\infty} \frac{x^n}{3^n}$$
and I need to find the values for x for which this converges and the radius of convergence.
I can use the radius test:
$$\lim_{{n}\to{\infty}} |\frac{{x}^{(n + 1)} 3^n}{{3}^{(n + 1)} x^n}|$$
and this equals
$$\lim_{{n}\to{\infty}} |\frac{x}{3}| = |\frac{x}{3}|$$
We need to compare the answer to 1, so if $ |\frac{x}{3}| > 1$ then it diverges, and if $ |\frac{x}{3}| < 1$ then it converges.
Thus, if $-3 < x < 3$, then the original sum converges and if $x > 3$ or $x < -3$ then the original sum diverges.
So it converges for $(-3, 3)$.
Also, we should consider the values of $-3$ and $3$.
$\sum_{n = 1}^{\infty} \frac{3^n}{3^n}$ equals $\sum_{n = 1}^{\infty} 1^n$ which diverges.
And $\sum_{n = 1}^{\infty} \frac{(-3)^n}{3^n}$ equals $\sum_{n = 1}^{\infty} (-1)^n$ which diverges.
Therefore, the original sum still converges for the values of $x = (-3, 3)$.
Is this correct?
Also, apparently the radius equals $3$, but I'm not sure why that is (or why it's not $-3$, for example)
$$\sum_{n = 1}^{\infty} \frac{x^n}{3^n}$$
and I need to find the values for x for which this converges and the radius of convergence.
I can use the radius test:
$$\lim_{{n}\to{\infty}} |\frac{{x}^{(n + 1)} 3^n}{{3}^{(n + 1)} x^n}|$$
and this equals
$$\lim_{{n}\to{\infty}} |\frac{x}{3}| = |\frac{x}{3}|$$
We need to compare the answer to 1, so if $ |\frac{x}{3}| > 1$ then it diverges, and if $ |\frac{x}{3}| < 1$ then it converges.
Thus, if $-3 < x < 3$, then the original sum converges and if $x > 3$ or $x < -3$ then the original sum diverges.
So it converges for $(-3, 3)$.
Also, we should consider the values of $-3$ and $3$.
$\sum_{n = 1}^{\infty} \frac{3^n}{3^n}$ equals $\sum_{n = 1}^{\infty} 1^n$ which diverges.
And $\sum_{n = 1}^{\infty} \frac{(-3)^n}{3^n}$ equals $\sum_{n = 1}^{\infty} (-1)^n$ which diverges.
Therefore, the original sum still converges for the values of $x = (-3, 3)$.
Is this correct?
Also, apparently the radius equals $3$, but I'm not sure why that is (or why it's not $-3$, for example)