- #1
Grothard
- 29
- 0
Homework Statement
Let A be a nonzero matrix of size n. Let a k*k submatrix of A be defined as a matrix obtained by deleting any n-k rows and n-k columns of A. Let m denote the largest integer such that some m*m submatrix has a nonzero determinant. Prove that rank(A) = k.
Now conversely suppose that rank(A) = m. Prove that some m*m submatrix has a nonzero determinant.
Homework Equations
Determinant formulas
The Attempt at a Solution
Not quite sure if I should proceed by examining the solution space of A or rather just do something clever with the determinants. I feel like there's a property of determinants that I'm missing that'd make this much easier.