- #1
karush
Gold Member
MHB
- 3,269
- 5
$29.$ Two sides of a triangle are $4 \, m$ and $5 \, m$ in length and the angle between them is increasing at a rate of $\frac{0.06 \, rad}{s}$
Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length. $\frac{\pi}{3}$
$\displaystyle
A=\frac{1}{2}(4)(5\sin{\theta})\\
\text{differentiate}\\
\displaystyle
\frac{dA}{ds}
=10\cos{\theta}\frac{d\theta}{ds}\\
\displaystyle\theta=\frac{\pi}{3}
\text{ and }
\displaystyle
\frac{d\theta}{ds}
=\frac{0.6 rad}{s}\\
\text{so far??} $
Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length. $\frac{\pi}{3}$
$\displaystyle
A=\frac{1}{2}(4)(5\sin{\theta})\\
\text{differentiate}\\
\displaystyle
\frac{dA}{ds}
=10\cos{\theta}\frac{d\theta}{ds}\\
\displaystyle\theta=\frac{\pi}{3}
\text{ and }
\displaystyle
\frac{d\theta}{ds}
=\frac{0.6 rad}{s}\\
\text{so far??} $
Last edited: