- #1
ergospherical
- 1,072
- 1,365
If ##(u,v)## are null coordinates and ##S(u,v)## a two-surface of constant ##u## and ##v## then the Bondi-Sachs mass ##M_{\mathrm{BS}}(u) = -\dfrac{1}{8\pi} \displaystyle{\lim_{v \rightarrow \infty}} \oint_{S(u,v)}(k-k_0) \sqrt{\sigma} d^2 \theta## satisfies (Poisson, 2007)\begin{align*}
\dfrac{d\mathrm{M}_{BS}}{du} = - \lim_{v \rightarrow \infty} \oint_{S(u,v)} F\sqrt{\sigma} d^2 \theta
\end{align*}if ##F## is the outward radiative flux. Where can I find a derivation of this formula?
Poisson, E., 2007. A relativist's toolkit. Cambridge: Cambridge University Press, pp.116-117.
\dfrac{d\mathrm{M}_{BS}}{du} = - \lim_{v \rightarrow \infty} \oint_{S(u,v)} F\sqrt{\sigma} d^2 \theta
\end{align*}if ##F## is the outward radiative flux. Where can I find a derivation of this formula?
Poisson, E., 2007. A relativist's toolkit. Cambridge: Cambridge University Press, pp.116-117.