- #36
Soumalya
- 183
- 2
I hope this is correct.
##\int_{L-δ}^{L} [(L-y)\left(1-\frac{(L-y)}{\delta}\right)](\frac{d\delta}{dt}) dy=\int_{L-δ}^{L}\nu dy##
⇔##[\frac{\delta^2}{6}-L(\delta-1)](\frac{d\delta}{dt})=\nu\delta##
⇔##[\frac{\delta}{6}-L\left(1-\frac{1}{\delta}\right)](\frac{d\delta}{dt})=\nu##
##\int_{L-δ}^{L} [(L-y)\left(1-\frac{(L-y)}{\delta}\right)](\frac{d\delta}{dt}) dy=\int_{L-δ}^{L}\nu dy##
⇔##[\frac{\delta^2}{6}-L(\delta-1)](\frac{d\delta}{dt})=\nu\delta##
⇔##[\frac{\delta}{6}-L\left(1-\frac{1}{\delta}\right)](\frac{d\delta}{dt})=\nu##