Ratio of partial pressures of gas

AI Thread Summary
The discussion centers on the relationship between the rate of effusion and the partial pressures of different gas species. It emphasizes that each gas has its own pressure, mass, and effusion rate, while maintaining the same temperature and area. The rate of effusion is directly proportional to the number of molecules, allowing for the calculation of pressure ratios by substituting known values. Participants suggest using the number ratio and masses to derive the pressure ratio effectively. Overall, the conversation highlights the importance of understanding these relationships in gas behavior.
so_gr_lo
Messages
69
Reaction score
10
Homework Statement
Bismuth is heated to 1100 K in an oven and gives rise to a beam of vapour molecules effusions from an aperture of area 10^-6 m^2. The beam contains Bi and Bi2 molecules in the ratio 1.41:1. Calculate the ratio of the partial pressures of Bi to Bi2 molecules

I believe the total pressure is the sum of the partial pressures but I’m not sure what to do with that, so I tried just calculating the ratio of the pressures but don’t know where to go from there
Relevant Equations
P=nKT where n is the number density per unit volume

and rate of effusion formula given below
Rate of effusion
21773AEF-762B-4304-97DC-503C0A716084.jpeg

4F88B95B-C34A-4AEF-AE4D-61D77D6A9114.jpeg
 
Physics news on Phys.org
Just guessing here, but try writing your rate of effusion equation for each species separately. Each has its own pressure, mass and effusion rate, but they have the same temperature and area.
 
So this is what I get. since the rate of effusion is proportional to the number of molecules I guess you just plug the given number ratio and masses in and solve for the pressure ratio.

2B9781B6-9B5C-4D59-9D1A-324D3918BE3B.jpeg
 
so_gr_lo said:
So this is what I get. since the rate of effusion is proportional to the number of molecules I guess you just plug the given number ratio and masses in and solve for the pressure ratio.

View attachment 301449
That's what I had in mind, yes. And you know ##N_{B_i}/N_{B_{i2}}, m_{B_i}, m_{B_{i2}}##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top