MHB Rayan's question at Yahoo Answers (Green's Theorem)

AI Thread Summary
Green's Theorem is applied to calculate the work done by the force F on a particle moving counterclockwise around the closed path C defined by r = 2 cos(θ). The force F is given as F(x,y) = (e^x − 9y)i + (e^y + 4x)j. The path C corresponds to a circle with the equation (x-1)² + y² = 1, and the area D is the disk bounded by C. The work W is computed as 13 times the area of D, resulting in W = 13π. This calculation demonstrates the effective use of Green's Theorem in evaluating work done by vector fields.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.
F(x,y) = (e^x − 9y)i + (e^y + 4x)j
C: r = 2 cos(θ)

Here is a link to the question:

Use Green's Theorem to calculate the work done by the force F? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Rayan,

Easily proved, $C:r=2\cos \theta$ is the circle $C:(x-1)^2+y^2=1$. If $D$ is the disk with boundary $C$, then by the Green's theorem, $$W=\int_C(e^x − 9y)dx + (e^y + 4x)dy=\iint_D(Q_x-P_y)dxdy=\iint_D(4+9)dxdy\\=13\iint_Ddxdy=13\mbox{Area }(D)=13\cdot \pi\cdot 1^2=\boxed{\;13\pi\;}$$
If you have further questions you can post them in the http://www.mathhelpboards.com/f10/ section.http://www.mathhelpboards.com/f10/
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top