RCL series circuit analysis: Damping Constant

  • Thread starter Thread starter hoangpham4696
  • Start date Start date
  • Tags Tags
    Analysis
AI Thread Summary
The discussion focuses on finding the damping constant for an RCL circuit, with the user calculating it as 1.296 based on their analysis. They assert that at t > infinity, the switch will be closed, making the equivalent resistance (Req) equal to Rx, which they clarify is actually R1. Questions arise regarding the terminology used, such as the meaning of "t > infinity" and the absence of Rx in the circuit. Additionally, there is confusion about the application of the critical damping equation and whether it is appropriate for the given scenario. The user seeks confirmation of their approach and calculations.
hoangpham4696
Messages
5
Reaction score
1
Homework Statement
Please help me to confirm if my approach is correct. If not, please guide me to a right approach. Thank you
Relevant Equations
$$ \zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})$$

$$v(c)=A_{1}exp(\frac{-t}{\tau_{1}})+A_{2}exp(\frac{-t}{\tau_{2}})+A_{3}$$
I am trying to find a damping constant of this circuit and below is my analysis. I just want to confirm if my approach is correct.

At t > infiniti, the switch will be closed. Therefore, Req for damping constant equation will just be Rx because R2 because R2 is neither in series or parallel with R1. As per calculation, damping constant is equal to:

$$\zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})=\frac{3}{2}(\sqrt{\frac{6.8nF}{9.1mH}})=1.296$$

In this case, the equation for critical damping RCL circuit will be:

$$v(c)=A_{1}exp(\frac{-t}{\tau_{1}})+A_{2}exp(\frac{-t}{\tau_{2}})+A_{3}$$

Switch is close when t> Infiniti. Therefore, ##A_{3}## will be 0.

Please help to confirm if my approach is correct. Thank you so much.

Screen Shot 2024-10-13 at 13.21.40 PM.png
 
Last edited:
Physics news on Phys.org
hoangpham4696 said:
Homework Statement: Please help me to confirm if my approach is correct.

Can you please post the complete, verbatim problem statement ?


hoangpham4696 said:
$$v(c)=A_{1}\exp(\frac{-t}{\tau_{1}})+A_{2}\exp(\frac{-t}{\tau_{2}})+A_{3} \tag{1}$$
Where did you get (1) ?

hoangpham4696 said:
At t > infiniti, the switch will be closed. Therefore, Req for damping constant equation will just be Rx because R2 because R2 is neither in series or parallel with R1. As per calculation, damping constant is equal to:

$$\zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})=\frac{3}{2}(\sqrt{\frac{6.8nF}{9.1mH}})=1.296$$

In this case, the equation for critical damping RCL circuit will be:

$$v(c)=A_{1}\exp(\frac{-t}{\tau_{1}})+A_{2}\exp(\frac{-t}{\tau_{2}})+A_{3}$$

Switch is close when t> Infiniti. Therefore, ##A_{3}## will be 0.


1. What do you mean with t> Infiniti

2. there is no Rx anywhere in sight. Do you mean R1 ?

3. Did you notice I1 is a current source ?

4. 'this case'? Where does the 'critical damping come from ? Does (1) apply to that case ?

##\ ##
 
  • Like
Likes SammyS and berkeman
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top