Reaaranging a Bernoulli Equation.

Click For Summary
To demonstrate that hole diameter is inversely proportional to sink time using the Bernoulli equation, the equation needs to be rearranged to isolate diameter. The relationship can be expressed as diameter = k/t, where k is a constant. By substituting velocity terms with flow rate and cross-sectional area, the equation can be manipulated to reflect this inverse relationship. A suggested approach is to derive a differential equation that connects the outflow rate to the change in liquid height over time. This will clarify how time is influenced by the diameter of the drain.
LemoneyF
Messages
3
Reaction score
0

Homework Statement



How can I rearrange this equation to graphically show that hole diametre is inversely proportional to sink time? So my experiment results show a nice diametre=1/t , and I would now like to take the equation I've come up with to show this relationship within the equation somehow. I was thinking the obvious way to do this would be to move the hole diametre on its own somehow and have time in the denominator of a fraction, I am not really sure.

Its not meant to be a worked equation, just show the inverse relationship in the equation.

Changing the velocity on the sink time side into an s/t gives a time to play around with, and changing the velocity on the cup side into a flow rate/cross sectional area gives a diametre.

Homework Equations



diametre=1/t

P1 + 1/2pv1^2 = P2 + 1/2pv2^2

Applying equation changes-

P1 + 1/2p(s/t)^2 = P2 + 1/2p(Q / pi x 1/2 diametre^2)^2

The Attempt at a Solution



Its not correct, but was thinking something along-

P1 + 1/2p (pi x 1/2 diametre^2)^2 = P2 + 1/2p (Q / (s/t) )
 
Physics news on Phys.org
If I understand the experiment, you are draining a sink of liquid and wish to show the time to drain is is inversely proportional to the diameter of the drain.

Hint: Write a differential equation that equates the outflow of liquid to the change in height of the liquid's surface in the sink. Solve it which results in the liquid level as a function of time. The differential equation would be based on the Bournoulli equation to represent the velocity at the drain. You will see how the time is affected by the diameter.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
4K
  • · Replies 13 ·
Replies
13
Views
1K