- #1
Shobhit
- 22
- 0
Show that
$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$
This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D
$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$
This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D