- #1
joypav
- 151
- 0
Here are a couple more problems I am working on!
Problem 1:
Prove that,
$limsupa_n+liminfb_n \leq limsup(a_n+b_n) \leq limsupa_n+limsupb_n$
Provided that the right and the left sides are not of the form $\infty - \infty$.
Proof:
Consider $(a_n)$ and $(b_n)$, sequences of real numbers.
Observe that for $n,m,l \in \Bbb{N}$,
$ \{ a_m+b_m : m > n\} \subseteq \{ a_m+b_l : m,l > n\} $
$ \implies sup\{ a_m+b_m : m > n\} \le sup\{ a_m+b_l : m,l > n\} $
Also, recall that,
$ \{ a_m+b_l : m,l > n\} = \{ a_m : m>n\} + \{ b_l : l > n\} $
Claim 1: $ sup(\{ a_m : m>n\} + \{ b_l : l > n\}) = sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
Proof of Claim:
"$\le$"
Take some $ a_m \in \{ a_m : m>n\} $ and $ b_l \in \{ b_l : l > n\} $.
Then, of course,
$ a_m + b_l \le sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
Using the definition of upper bound we can conclude that $ sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $ is an upper bound for $ \{ a_m : m>n\} + \{ b_l : l > n\} $. (because $a_m$ and $b_l$ were chosen arbitrarily)
$ \implies sup(\{ a_m : m>n\} + \{ b_l : l > n\}) \leq sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
"$\ge$"
Choose $ \epsilon > 0 $.
Then $ \exists a,b, a \in \{ a_m : m>n\}, b \in \{ b_l : l > n\} $ such that
$ a > sup\{ a_m : m>n\} - \frac{\epsilon}{2} $
$ b > sup\{ b_l : l > n\} - \frac{\epsilon}{2} $
Adding the inequalities gives,
$ a + b > sup\{ a_m : m>n\} + sup\{ b_l : l > n\} - \epsilon $
This is for any $\epsilon$. So let $ \epsilon \rightarrow 0 $. Then,
$ sup(\{ a_m : m>n\} + \{ b_l : l > n\}) > a + b > sup\{ a_m : m>n\} + sup\{ b_l : l > n\} $
$ \implies $ Claim 1 is true.
Now consider the following sequences:
$ (sup_{m \geq n}(a_m+b_m)) $
$ (sup_{m \geq n}a_m + sup_{m \geq n}b_m) $
$ \forall m \in \Bbb{N} , a_m+b_m \leq supa_m + supb_m $
$ \implies lim_{n \rightarrow \infty}sup_{m \geq n}(a_m + b_m) \leq lim_{n \rightarrow \infty}(sup_{m \geq n}a_m + sup_{m \geq n}b_m) = lim_{n \rightarrow \infty}sup_{m \geq n}a_m + lim_{n \rightarrow \infty}sup_{m \geq n}b_m $
$ \implies $ 1. $ lim_{n \rightarrow \infty}sup(a_n+b_n) \leq lim_{n \rightarrow \infty}supa_n + lim_{n \rightarrow \infty}supb_n $
So we have proven the right side of the inequality.
Now we need to prove the left side. This part of my proof is, I think... wrong. Haha.
So we need to show now that,
$ limsupa_n+liminfb_n \leq limsup(a_n+b_n) $
$ \iff liminfb_n \leq limsup(a_n+b_n) - limsupa_n $
Using 1., $ \iff liminfb_n \leq limsup(a_n + b_n- a_n) = limsupb_n $
This inequality is obviously true.
$ \implies $ 2. $ limsupa_n+liminfb_n \leq limsup(a_n+b_n) $
Then, by 1. and 2. the proof is complete.Problem 2:
Prove that if, for all $ n > 0$, $ a_n > 0 $ and $ b_n > 0 $, then
$ limsup(a_nb_n) \le limsupa_n \cdot limsupb_n $
Show that the inequality may be strict.
I haven't had a chance to work on this much. Can I approach it similarly to Problem 1?
Problem 1:
Prove that,
$limsupa_n+liminfb_n \leq limsup(a_n+b_n) \leq limsupa_n+limsupb_n$
Provided that the right and the left sides are not of the form $\infty - \infty$.
Proof:
Consider $(a_n)$ and $(b_n)$, sequences of real numbers.
Observe that for $n,m,l \in \Bbb{N}$,
$ \{ a_m+b_m : m > n\} \subseteq \{ a_m+b_l : m,l > n\} $
$ \implies sup\{ a_m+b_m : m > n\} \le sup\{ a_m+b_l : m,l > n\} $
Also, recall that,
$ \{ a_m+b_l : m,l > n\} = \{ a_m : m>n\} + \{ b_l : l > n\} $
Claim 1: $ sup(\{ a_m : m>n\} + \{ b_l : l > n\}) = sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
Proof of Claim:
"$\le$"
Take some $ a_m \in \{ a_m : m>n\} $ and $ b_l \in \{ b_l : l > n\} $.
Then, of course,
$ a_m + b_l \le sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
Using the definition of upper bound we can conclude that $ sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $ is an upper bound for $ \{ a_m : m>n\} + \{ b_l : l > n\} $. (because $a_m$ and $b_l$ were chosen arbitrarily)
$ \implies sup(\{ a_m : m>n\} + \{ b_l : l > n\}) \leq sup\{ a_m : m>n\} + sup \{ b_l : l > n\} $
"$\ge$"
Choose $ \epsilon > 0 $.
Then $ \exists a,b, a \in \{ a_m : m>n\}, b \in \{ b_l : l > n\} $ such that
$ a > sup\{ a_m : m>n\} - \frac{\epsilon}{2} $
$ b > sup\{ b_l : l > n\} - \frac{\epsilon}{2} $
Adding the inequalities gives,
$ a + b > sup\{ a_m : m>n\} + sup\{ b_l : l > n\} - \epsilon $
This is for any $\epsilon$. So let $ \epsilon \rightarrow 0 $. Then,
$ sup(\{ a_m : m>n\} + \{ b_l : l > n\}) > a + b > sup\{ a_m : m>n\} + sup\{ b_l : l > n\} $
$ \implies $ Claim 1 is true.
Now consider the following sequences:
$ (sup_{m \geq n}(a_m+b_m)) $
$ (sup_{m \geq n}a_m + sup_{m \geq n}b_m) $
$ \forall m \in \Bbb{N} , a_m+b_m \leq supa_m + supb_m $
$ \implies lim_{n \rightarrow \infty}sup_{m \geq n}(a_m + b_m) \leq lim_{n \rightarrow \infty}(sup_{m \geq n}a_m + sup_{m \geq n}b_m) = lim_{n \rightarrow \infty}sup_{m \geq n}a_m + lim_{n \rightarrow \infty}sup_{m \geq n}b_m $
$ \implies $ 1. $ lim_{n \rightarrow \infty}sup(a_n+b_n) \leq lim_{n \rightarrow \infty}supa_n + lim_{n \rightarrow \infty}supb_n $
So we have proven the right side of the inequality.
Now we need to prove the left side. This part of my proof is, I think... wrong. Haha.
So we need to show now that,
$ limsupa_n+liminfb_n \leq limsup(a_n+b_n) $
$ \iff liminfb_n \leq limsup(a_n+b_n) - limsupa_n $
Using 1., $ \iff liminfb_n \leq limsup(a_n + b_n- a_n) = limsupb_n $
This inequality is obviously true.
$ \implies $ 2. $ limsupa_n+liminfb_n \leq limsup(a_n+b_n) $
Then, by 1. and 2. the proof is complete.Problem 2:
Prove that if, for all $ n > 0$, $ a_n > 0 $ and $ b_n > 0 $, then
$ limsup(a_nb_n) \le limsupa_n \cdot limsupb_n $
Show that the inequality may be strict.
I haven't had a chance to work on this much. Can I approach it similarly to Problem 1?