- #1
joypav
- 151
- 0
I am working a bunch of problems for my Real Analysis course.. so I am sure there are more to come. I feel like I may have made this proof too complicated. Is it correct? And if so, is there a simpler method?
Problem:
Show that $liminfa_n \leq limsupa_n$.
Proof:
Consider a sequence of real numbers, $(a_n)$.
By the definitions of inf and sup, we know,
$\forall n \in N, infa_m \leq supa_m, m \in N$
Now consider the following sequences:
$(inf_{m \ge n}a_m)$ and $(sup_{m \ge n}a_m)$
We know that,
(1.) $inf_{m \ge n}a_m \le sup_{m \ge n}a_m$ for all $n > N$, some $N \in \Bbb{N}$
Claim 1: $lim_{n \rightarrow \infty}inf_{m \ge n}a_m \le lim_{n \rightarrow \infty}sup_{m \ge n}a_m $
Proof of Claim:
Let $\underline{a'}=lim_{n \rightarrow \infty}inf_{m \ge n}a_m$ and $\overline{a'}=lim_{n \rightarrow \infty}sup_{m \ge n}a_m$
Suppose the claim is false, then $\underline{a'}>\overline{a'}$.
Given $\epsilon>0, \exists N_1 \in \Bbb{N}, \vert inf_{m \ge n}a_m - \underline{a'} \vert < \frac{\epsilon}{2}$ and
$\exists N_2 \in \Bbb{N}, \vert sup_{m \ge n}a_m - \overline{a'} \vert < \frac{\epsilon}{2}$
Choose $\epsilon = \frac{\underline{a'}-\overline{a'}}{2} > 0$. (Because $\underline{a'} > \overline{a'} \implies \underline{a'}-\overline{a'} > 0$).
If $n > max{N,N_1,N_2}$, then
$inf_{m \ge n}a_m > \underline{a'} - \epsilon = \underline{a'} - \frac{\underline{a'}-\overline{a'}}{2} = \overline{a'} + \frac{\underline{a'}-\overline{a'}}{2} = \overline{a'} + \epsilon > sup_{m \ge n}a_m$
$\implies inf_{m \ge n}a_m > sup_{m \ge n}a_m$, a contradiction of (1.).
$\implies$ Claim 1 is true.
Then,
$lim_{n \rightarrow \infty}inf_{m \ge n}a_m \le lim_{n \rightarrow \infty}sup_{m \ge n}a_m$
$\implies lim_{n \rightarrow \infty}infa_n \le lim_{n \rightarrow \infty}supa_n$
Problem:
Show that $liminfa_n \leq limsupa_n$.
Proof:
Consider a sequence of real numbers, $(a_n)$.
By the definitions of inf and sup, we know,
$\forall n \in N, infa_m \leq supa_m, m \in N$
Now consider the following sequences:
$(inf_{m \ge n}a_m)$ and $(sup_{m \ge n}a_m)$
We know that,
(1.) $inf_{m \ge n}a_m \le sup_{m \ge n}a_m$ for all $n > N$, some $N \in \Bbb{N}$
Claim 1: $lim_{n \rightarrow \infty}inf_{m \ge n}a_m \le lim_{n \rightarrow \infty}sup_{m \ge n}a_m $
Proof of Claim:
Let $\underline{a'}=lim_{n \rightarrow \infty}inf_{m \ge n}a_m$ and $\overline{a'}=lim_{n \rightarrow \infty}sup_{m \ge n}a_m$
Suppose the claim is false, then $\underline{a'}>\overline{a'}$.
Given $\epsilon>0, \exists N_1 \in \Bbb{N}, \vert inf_{m \ge n}a_m - \underline{a'} \vert < \frac{\epsilon}{2}$ and
$\exists N_2 \in \Bbb{N}, \vert sup_{m \ge n}a_m - \overline{a'} \vert < \frac{\epsilon}{2}$
Choose $\epsilon = \frac{\underline{a'}-\overline{a'}}{2} > 0$. (Because $\underline{a'} > \overline{a'} \implies \underline{a'}-\overline{a'} > 0$).
If $n > max{N,N_1,N_2}$, then
$inf_{m \ge n}a_m > \underline{a'} - \epsilon = \underline{a'} - \frac{\underline{a'}-\overline{a'}}{2} = \overline{a'} + \frac{\underline{a'}-\overline{a'}}{2} = \overline{a'} + \epsilon > sup_{m \ge n}a_m$
$\implies inf_{m \ge n}a_m > sup_{m \ge n}a_m$, a contradiction of (1.).
$\implies$ Claim 1 is true.
Then,
$lim_{n \rightarrow \infty}inf_{m \ge n}a_m \le lim_{n \rightarrow \infty}sup_{m \ge n}a_m$
$\implies lim_{n \rightarrow \infty}infa_n \le lim_{n \rightarrow \infty}supa_n$
Last edited: