- #1
playboy
Let A and B be subsets if a universal set U. Prove the following.
a) A\B = (U\B)\(U\A)
To do this, show it both ways.
1) A\B contains (U\B)\(U\A)
2) (U\B)\(U\A) contains A\B
I'll start with 2)
if x is in (U\B)\(U\A),
then x is in (U\B) and x is NOT in (U\A).
then (x is in U and x is NOT in B) and (x is NOT in U and x is in A)
so, x is in U and x is NOT in U and x is NOT in B and x is in A
*I think i made a mistake "x is in U and x is NOT in U" doesnt make sense? Any ideas?
Back at 1)
if x is in A/B,
then x is in A and x is NOT in B
then either x is in B or x is NOT in A
*this is where I am lost :S
Anyone have any ideas on how to solve this?
Thanks in advance
a) A\B = (U\B)\(U\A)
To do this, show it both ways.
1) A\B contains (U\B)\(U\A)
2) (U\B)\(U\A) contains A\B
I'll start with 2)
if x is in (U\B)\(U\A),
then x is in (U\B) and x is NOT in (U\A).
then (x is in U and x is NOT in B) and (x is NOT in U and x is in A)
so, x is in U and x is NOT in U and x is NOT in B and x is in A
*I think i made a mistake "x is in U and x is NOT in U" doesnt make sense? Any ideas?
Back at 1)
if x is in A/B,
then x is in A and x is NOT in B
then either x is in B or x is NOT in A
*this is where I am lost :S
Anyone have any ideas on how to solve this?
Thanks in advance