MHB (Real functions and equations) How to select points for a graph.

AI Thread Summary
Selecting points for graphing functions like quadratics, square-root, and inverse variations can be challenging. For square-root functions, points can be derived by setting g(x) equal to n², where n is a non-negative integer, leading to coordinates of the form (x', an + b). Quadratic functions can be graphed by using the vertex and reflecting points across the axis of symmetry, generating points like (h ± n, an² + k). Clarifications on mathematical symbols indicate that n represents non-negative integers, and adjustments to the function format can help in point selection. Understanding these methods simplifies the process of graphing various functions effectively.
Kyriakos1
Messages
3
Reaction score
0
When I am given a function quadratic, square-root and inverse variation I am often uncertain as to how to select my points to graph the function. Usually I can find my vertex easily enough and y and x intercepts if any but otherwise I don't know how to select my points. Are there base points for each function? Such as (0,0), (1,1), (4,2), (8,2.8) for a function of square-root or (0,0), (1,1), (2,4), (-1,1), (-2,4) for a quadratic function.
 
Mathematics news on Phys.org
If I am given a function of the form:

$$f(x)=a\sqrt{g(x)}+b$$

Then, I will find $x=x'$ such that:

$$g(x')=n^2$$ where $$n\in\mathbb{N_0}$$

Then I plot the points:

$$(x,y)=(x',an+b)$$

If I am given a function of the form:

$$f(x)=a(x-h)^2+k$$

I let $$x=h+n$$ where $$n\in\mathbb{N_0}$$, and then for each point, reflect it across the axis of symmetry. You will get the set of points:

$$(x,y)=(h\pm n,an^2+k)$$
 
I thank you for answering and I do not mean to sound ungrateful but I don't really understand your explanation. I do not understand these symbols: n ∈ N 0 x′.
Also I have learned the square root-function as f(x)=a\sqrt{b(x-h)} + k and am unsure how to use f(x)=ag(x)−−−−√+b. Perhaps you can dumb it down a notch.
 
The statement $$n\in\mathbb{N_0}$$ means that n is a natural number including zero, that is:

$$n\in\{0,1,2,3,\cdots\}$$

If you are given:

$$f(x)=a\sqrt{b(x-h)}+k$$

then set:

$$b(x-h)=n^2\implies x=\frac{n^2}{b}+h$$

which generates the points:

$$\left(\frac{n^2}{b}+h,an+k\right)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top