- #1
binbagsss
- 1,299
- 11
## L(x) = L(\phi(x), \partial_{u} \phi (x) ) = -1/2 (m^{2} \phi ^{2}(x) + \partial_{u} \phi(x) \partial^{u} \phi (x))## , the Lagrange density.
## S= \int d^{4}(x) L (x) ##, the action.
## \phi -> \phi + \delta \phi ## (just shortened the notation and dropped the x dependence)
I have ## \delta S = \int d^{4} x ( -1/2( \delta (m^{2} \phi ^{2}) + \delta (\partial_{u} \phi \partial^{u} \phi )) =0 ## last equality by principle of least action .
I have ##\delta (m^{2} \phi ^{2}) = m^{2} \phi \delta \phi ## , which is fine.
I'm having problems with the next term:
##\delta (\partial_{u} \phi \partial^{u} \phi )) = \delta (\partial_{u} \phi ) \partial^{u} \phi + \partial_{u} \phi \delta ( \partial^{u} \phi ) ##
I need to show that is equal to ##\partial_{u} \phi \partial^{u} (\delta \phi) ## I am then fine with the rest of the derivation, which involves doing integration by parts on this term to 'change' ## \partial^{u} (\delta \phi) ## to ##\delta \phi## and then loosing this arbitrary variation in ##\phi## to get the equations of motion.
I am clueless how to get ## \delta (\partial_{u} \phi ) \partial^{u} \phi + \partial_{u} \phi \delta ( \partial^{u} \phi ) = \partial_{u} \phi \partial^{u} (\delta \phi) ##, any tips getting starting greatly appreciated.
Many thanks in advance.
## S= \int d^{4}(x) L (x) ##, the action.
## \phi -> \phi + \delta \phi ## (just shortened the notation and dropped the x dependence)
I have ## \delta S = \int d^{4} x ( -1/2( \delta (m^{2} \phi ^{2}) + \delta (\partial_{u} \phi \partial^{u} \phi )) =0 ## last equality by principle of least action .
I have ##\delta (m^{2} \phi ^{2}) = m^{2} \phi \delta \phi ## , which is fine.
I'm having problems with the next term:
##\delta (\partial_{u} \phi \partial^{u} \phi )) = \delta (\partial_{u} \phi ) \partial^{u} \phi + \partial_{u} \phi \delta ( \partial^{u} \phi ) ##
I need to show that is equal to ##\partial_{u} \phi \partial^{u} (\delta \phi) ## I am then fine with the rest of the derivation, which involves doing integration by parts on this term to 'change' ## \partial^{u} (\delta \phi) ## to ##\delta \phi## and then loosing this arbitrary variation in ##\phi## to get the equations of motion.
I am clueless how to get ## \delta (\partial_{u} \phi ) \partial^{u} \phi + \partial_{u} \phi \delta ( \partial^{u} \phi ) = \partial_{u} \phi \partial^{u} (\delta \phi) ##, any tips getting starting greatly appreciated.
Many thanks in advance.