A Real vs complex spherical harmonics for hexagonal symmetry

Junaidjami
Messages
2
Reaction score
0
TL;DR Summary
Orbital analysis of magnetic anisotropy energy using second order perturbation theory for hexagonal symmetry
1684995728053.png

Are real spherical harmonics better than complex spherical harmonics for hexagonal symmetry, which are
directly associated to a finite Lz?
 
Physics news on Phys.org
An eigenvector of ##L_z## in position representation is a standard complex spherical harmonic, i.e.,
$$\text{Y}_{lm}=P_{lm}[\cos(\vartheta)] \exp(\mathrm{i} m \varphi).$$
Note that in spherical coordinates the position representation of ##\hat{L}_z## reads
$$\hat{L}_z=-\mathrm{i} \hbar \partial_{\varphi}.$$
 
vanhees71 said:
An eigenvector of ##L_z## in position representation is a standard complex spherical harmonic, i.e.,
$$\text{Y}_{lm}=P_{lm}[\cos(\vartheta)] \exp(\mathrm{i} m \varphi).$$
Note that in spherical coordinates the position representation of ##\hat{L}_z## reads
$$\hat{L}_z=-\mathrm{i} \hbar \partial_{\varphi}.$$

vanhees71 said:
Is there any relation between the crystal symmetry and real/complex spherical harmonics? And is there a way to judge the superiority of one over the other?
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top