- #1
greg_rack
Gold Member
- 363
- 79
Hi guys,
how are you doing?
My maths teacher asked me to work on and deliver an engaging insight-oriented "lesson" to my class, about physical/engineering and real-world applications of differential equations, in order to better get the meaning of operating with such mathematical objects.
Of course, growth and decay phenomena, along with motion equation(2nd order diff. eq.) came to my mind... but I was wondering if I might have been able to delve a bit deeper into the subject by delivering more "advanced" and interesting examples of such applications(even if still doable with high-school calculus knowledge).
Online, I only found the brachistochrone problem which particularly caught my interest, and which seemed not too advanced at a glance... but then I found out it involved concepts such as the Euler-Lagrange equation, which is definitely too beyond my class' level.
Have you got other ideas? Or should I stick just to decay and motion?
how are you doing?
My maths teacher asked me to work on and deliver an engaging insight-oriented "lesson" to my class, about physical/engineering and real-world applications of differential equations, in order to better get the meaning of operating with such mathematical objects.
Of course, growth and decay phenomena, along with motion equation(2nd order diff. eq.) came to my mind... but I was wondering if I might have been able to delve a bit deeper into the subject by delivering more "advanced" and interesting examples of such applications(even if still doable with high-school calculus knowledge).
Online, I only found the brachistochrone problem which particularly caught my interest, and which seemed not too advanced at a glance... but then I found out it involved concepts such as the Euler-Lagrange equation, which is definitely too beyond my class' level.
Have you got other ideas? Or should I stick just to decay and motion?