- #1
jonroberts74
- 189
- 0
A single pair (male and female) of rabbits is born at the beginning of the year. Assume the following:
1) Each pair is not fertile for their first month bet thereafter give birth to four new male/female pairs at the end of every month
2) no rabbits die
a) let [tex]r_{n}[/tex] be the number of pairs of rabbits alive at the end of each month n for each integer [tex]n \ge 1[/tex] find a recurrence relation for [tex]r_{0},r_{1},r_{2}...[/tex]
b) how many rabbits will there be at the end of the yearMonth | Babies (in pairs) | Adults (in pairs) | total Pairs (r_{n})
1 |1 |0 |1
_________________________________________________________________
2 |4 |1 |5
________________________________________________________________
3 |20 |5 |25
________________________________________________________________
4 |100 |25 |125
___________________________________________________________
5 |400 |125 |525
_____________________________________________________________
6 |2100 |525 |2625
_____________________________________________________________
7 |10500 |2625 |13125
______________________________________________________________
8 |52500 |13125 |65625
_______________________________________________________________
9 |262500 |65625 |328125
________________________________________________________________
10 |1312500 |328125 |1640625
_________________________________________________________________
11 |6562500 |1640625 |8203125
_________________________________________________________________
12 |328125000 |8203125 |41015625
(sorry for the ugly table)
the recurrence relation seems to be [tex]r_{n} = a+4a[/tex] where a = number of adults, for [tex]n \ge 1[/tex]
is that correct?
and part b) would be 41,015,625 pairs so 82,031,250 rabbits
1) Each pair is not fertile for their first month bet thereafter give birth to four new male/female pairs at the end of every month
2) no rabbits die
a) let [tex]r_{n}[/tex] be the number of pairs of rabbits alive at the end of each month n for each integer [tex]n \ge 1[/tex] find a recurrence relation for [tex]r_{0},r_{1},r_{2}...[/tex]
b) how many rabbits will there be at the end of the yearMonth | Babies (in pairs) | Adults (in pairs) | total Pairs (r_{n})
1 |1 |0 |1
_________________________________________________________________
2 |4 |1 |5
________________________________________________________________
3 |20 |5 |25
________________________________________________________________
4 |100 |25 |125
___________________________________________________________
5 |400 |125 |525
_____________________________________________________________
6 |2100 |525 |2625
_____________________________________________________________
7 |10500 |2625 |13125
______________________________________________________________
8 |52500 |13125 |65625
_______________________________________________________________
9 |262500 |65625 |328125
________________________________________________________________
10 |1312500 |328125 |1640625
_________________________________________________________________
11 |6562500 |1640625 |8203125
_________________________________________________________________
12 |328125000 |8203125 |41015625
(sorry for the ugly table)
the recurrence relation seems to be [tex]r_{n} = a+4a[/tex] where a = number of adults, for [tex]n \ge 1[/tex]
is that correct?
and part b) would be 41,015,625 pairs so 82,031,250 rabbits