- #1
K29
- 108
- 0
Homework Statement
Show that the wave equation [itex]u_{tt}-\alpha^{2}u_{xx}=0[/itex] can be reduced to the form [itex]\phi_{\xi \eta}=0[/itex] by the change of variables
[itex]\xi=x-\alpha t[/itex]
[itex]\eta=x+\alpha t[/itex]
The Attempt at a Solution
[itex]\frac{\partial u}{\partial t}=\frac{\partial \xi}{\partial t}\frac{\partial \phi}{\partial \xi}+\frac{\partial \eta}{\partial t}\frac{\partial \phi}{\partial \eta}[/itex] (chain rule)
[itex]\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial t}(\frac{\partial \xi}{\partial t}\frac{\partial \phi}{\partial \xi} + \frac{\partial \eta}{\partial t} \frac{\partial \phi}{\partial \eta})[/itex]
After some use of chain rule and product rule I get:
[itex]\frac{\partial^{2} u}{\partial t^{2}}= \frac{\partial^{2}\xi}{\partial t^{2}}\frac{\partial\phi}{\partial\xi} + \left(\frac{\partial \xi}{\partial t}\right)^{2} \frac{\partial^{2}\phi}{\partial \xi^{2}} + \frac{\partial^{2}\eta}{\partial t^{2}}\frac{\partial\phi}{\partial\eta} + \left(\frac{\partial \eta}{\partial t}\right)^{2} \frac{\partial^{2}\phi}{\partial \eta^{2}}[/itex] (1)
Similarly
[itex]\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2}\xi}{\partial x^{2}}\frac{\partial\phi}{\partial\xi} + \left(\frac{\partial \xi}{\partial x}\right)^{2}\frac{\partial^{2}\phi}{\partial \xi^{2}}+\frac{\partial^{2}\eta}{\partial x^{2}}\frac{\partial\phi}{\partial\eta} + \left(\frac{\partial \eta}{\partial x}\right)^{2}\frac{\partial^{2}\phi}{\partial \eta^{2}}[/itex] (2)
Making the substitutions:
[itex]\frac{\partial \xi}{\partial t}=-\alpha[/itex], [itex]\frac{\partial^{2}\xi}{\partial t^{2}}=0[/itex]
[itex]\frac{\partial \xi}{\partial x}=1[/itex], [itex]\frac{\partial^{2}\xi}{\partial x^{2}}=0[/itex]
and
[itex]\frac{\partial \eta}{\partial t}=\alpha[/itex], [itex]\frac{\partial^{2}\xi}{\partial t^{2}}=0[/itex]
[itex]\frac{\partial \eta}{\partial x}=1[/itex], [itex]\frac{\partial^{2}\xi}{\partial x^{2}}=0[/itex]
Substituting these into (1) and (2) and substituting (1) and (2) into the original wave equation we get:
[itex]\alpha^{2}\frac{\partial^{2}\phi}{\partial \xi^{2}}+\alpha^{2}\frac{\partial^{2} \phi}{\partial \eta^{2}}-\alpha^{2}\left(\frac{\partial^{2}\phi}{\partial \xi^{2}}+\frac{\partial^{2}\phi}{\partial\eta^{2}}\right)=0[/itex]
[itex]0=0[/itex]
Has something gone wrong here? Please help. Thanks