I Reduction of order in solving second order differential equations

  • I
  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Reduction
chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR Summary
Why is the constant dropped when determining solutions to second order differential equations. (See highlight in red -attached). Otherwise, the reduction of order approach is pretty straightforward.
1704254060434.png
 
Physics news on Phys.org
chwala said:
TL;DR Summary: Why is the constant dropped when determining solutions to second order differential equations. (See highlight in red -attached). Otherwise, the reduction of order approach is pretty straightforward.

View attachment 338047
Because keeping ##k## is the same thing as adjusting the value of the arbitrary constant ##c_1## in the general solution?
 
renormalize said:
Because keeping ##k## is the same thing as adjusting the value of the arbitrary constant ##c_1## in the general solution?
Thanks noted...was wondering why they substituted for the constant ##c=-3## and dropped the other constant ##k##. The constant ##c## was not dropped as indicated rather a value was assigned to it. .

Is this not for convenience? to perhaps have " nice solutions'.

Cheers man.
 
Last edited:
chwala said:
Thanks noted...was wondering why they substituted for the constants ##c=-3## and dropped ##k##. The constant ##c## was not dropped as indicated rather a value was assigned to it. .
Just like keeping ##k## amounts to redefining ##c_1##, wouldn't keeping ##-c/3## simply adjust the value of the arbitrary constant ##c_2##? These are the types of simplifications that come naturally once you're practiced enough solving differential questions. When solving a 2nd-order ODE, as long as you're left in the end with two arbitrary constants, you know you've found the general solution.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Back
Top