- #1
nmbr28albert
- 13
- 3
When calculating the dielectric constant of metals using the Drude model, in the low frequency regime (infrared and beyond) one gets an approximately pure imaginary value:
$$\epsilon(\omega) \approx i\frac{4\pi n e^2\tau}{m_e\omega}$$
which gives an absorption coefficient:
$$\alpha(\omega) \approx \frac{\omega}{c}\sqrt{\frac{8\pi ne^2\tau}{m_e\omega}}$$
When looking at graphs of actual reflectivities of metals in the infrared, the reflectance is almost 100%. From this result however, I first thought that most of the incident light would be absorbed rather than reflected. Is there a physical reason for this difference, or is this a shortcoming of the Drude model?
$$\epsilon(\omega) \approx i\frac{4\pi n e^2\tau}{m_e\omega}$$
which gives an absorption coefficient:
$$\alpha(\omega) \approx \frac{\omega}{c}\sqrt{\frac{8\pi ne^2\tau}{m_e\omega}}$$
When looking at graphs of actual reflectivities of metals in the infrared, the reflectance is almost 100%. From this result however, I first thought that most of the incident light would be absorbed rather than reflected. Is there a physical reason for this difference, or is this a shortcoming of the Drude model?