- #1
fishturtle1
- 394
- 82
- Homework Statement
- Let ##F## be a reflection in the dihedral group ##D_n## and ##R## be a rotation in ##D_n##. Determine ##C(F)## when ##n## is odd. Determine ##C(F)## when ##n## is even. Determine ##C(R)##.
- Relevant Equations
- Let ##a## be an element of a group ##G##. Then ##C(a) = \lbrace x \in G : ax = xa \rbrace##
For a reflection ##F## and a rotation ##R## in a dihedral group ##D_n##, we have ##FR^kF = R^{-k}## for any integer ##k##.
Let ##F_0## be a reflection in ##D_n## s.t. ##F \neq F_0##. Observe, ##F_0F = FF_0## is equivalent to ##F_0FF_0F = (F_0F)^2 = R_0##. Since a reflection followed by a reflection is a rotation, and the only rotation of order 2 is ##R_{180}##, we have ##F_0F = R_{180}##. Thus, ##F_0F = FF_0## is equivalent to ##F_0F = R_{180}##. Thus, the only reflection ##C(F)## can contain(besides ##F##) is ##F_0## such that ##FF_0 = R_{180}##.
Next, let ##R_x## be any rotation in ##D_n##. Observe, ##FR_x = R_xF## is equivalent to ##FR_xF = R_x##. But ##FR_xF = R_x^{-1}##.
So ##R_x = R_x^{-1}##. The only rotation that satisfies this equation is ##R_{180}##. So the only rotation that ##C(F)## can contain is ##R_{180}##.
We may conclude that for even ##n##, ##C(F) = \lbrace R_0, R_{180}, F, F_0 \rbrace## where ##FF_0 = R_{180}## and for odd ##n##, ##C(F) = \lbrace R_0, F \rbrace##.
Next we find ##C(R)##. Observe that ##RR_x = R_xR## for all rotations ##R_x## in ##D_n##. Let ##F_1## be a reflection in ##D_n##. Then ##RF_1 = F_1R## is equivalent to ##F_1RF_1 = R## which implies ##R = R^{-1}##. This equation is true only when ##R = R_{180}##. Thus, ##C(R_{180}) = D_n##. For ##R \neq R_{180}##, we have ##C(R) = \lbrace R_0, R_{\frac{360}{n}}, R_{2\cdot\frac{360}{n}}, \dots, R_{(n-1)\cdot\frac{360}{n}} \rbrace##.
Can someone please check this?
Next, let ##R_x## be any rotation in ##D_n##. Observe, ##FR_x = R_xF## is equivalent to ##FR_xF = R_x##. But ##FR_xF = R_x^{-1}##.
So ##R_x = R_x^{-1}##. The only rotation that satisfies this equation is ##R_{180}##. So the only rotation that ##C(F)## can contain is ##R_{180}##.
We may conclude that for even ##n##, ##C(F) = \lbrace R_0, R_{180}, F, F_0 \rbrace## where ##FF_0 = R_{180}## and for odd ##n##, ##C(F) = \lbrace R_0, F \rbrace##.
Next we find ##C(R)##. Observe that ##RR_x = R_xR## for all rotations ##R_x## in ##D_n##. Let ##F_1## be a reflection in ##D_n##. Then ##RF_1 = F_1R## is equivalent to ##F_1RF_1 = R## which implies ##R = R^{-1}##. This equation is true only when ##R = R_{180}##. Thus, ##C(R_{180}) = D_n##. For ##R \neq R_{180}##, we have ##C(R) = \lbrace R_0, R_{\frac{360}{n}}, R_{2\cdot\frac{360}{n}}, \dots, R_{(n-1)\cdot\frac{360}{n}} \rbrace##.
Can someone please check this?