- #1
Adgorn
- 130
- 18
Let's say we have a set of eigenvectors of a certain n-square matrix. I understand why the vectors are linearly independent if each vector belongs to a distinct eigenvalue.
However the set is comprised of subsets of vectors, where the vectors of each subset belong to the same eigenvalue. For example, in a 7-square matrix, ##v_1, v_2, v_3## belong to ##λ_1##, ##v_4, v_5## belong to ##λ_2## and ##v_6, v_7## belong to ##λ_3##. How do we prove the vectors are still linearly independent?
However the set is comprised of subsets of vectors, where the vectors of each subset belong to the same eigenvalue. For example, in a 7-square matrix, ##v_1, v_2, v_3## belong to ##λ_1##, ##v_4, v_5## belong to ##λ_2## and ##v_6, v_7## belong to ##λ_3##. How do we prove the vectors are still linearly independent?