- #1
Zerkor
- 18
- 0
Homework Statement
This is not my homework I'm a self-learner and I faced a problem solving these two problems and I found nobody to help me to solve them, I hope somebody here will help. The two problems are :
1- An airplane is flying at a constant speed of 360 mile\hr and climbing at an angle of 45. At the moment the plane's altitude is 10560 ft. , it passes directly over an air traffic control tower on the ground. Find the rate at which the airplane's distance from the tower is changing 1 minute later (neglect the height of the tower)
2- A paper cup containing water has the shape of a frustum of a right circular cone of altitude 6 in. and lower and upper base radii 1 in. and 2 in. respectively. If water is leaking out of the cup at a rate of 3 in^3\hr. , at what rate is the water level decreasing when the depth of the water is 4 in.? (Note: the volume V of a frustum of a cone of a right circular cone of altitude h and base radii a and b is given by V=1\3*pi*h*(a^2+b^2+ab))
Homework Equations
The Attempt at a Solution
In problem (1) : I drew a triangle with radius r and an opposite side to the 45° angle of length 10560 ft (2 miles) but I don't know should I find dr\dt or should I find the rate of change of the side drawn from the point the tower into intersect the extent of the hypotenuse (r)? and if so how can I get it?
In problem (2) : I don't know whether if a is changing or not .. I think that a is changing and b is constant but whenever I treat them as constants or as variables my solution is always different from the provided answers to this problem .. (the answer is -27\25pi)