- #1
SUDOnym
- 90
- 1
I left a post up re. Fourier transforms and this query is on the same question:
having solved the heat equation in infinite domain in terms of U(alpha,t) we now want to inverse transform back to u(x,t):
[tex]U(\alpha,t)=\frac{2u_{0}}{\sqrt{2\pi}}\frac{sin\alpha}{\alpha}e^{-k^{2}\alpha^{2}t}[/tex]
[tex]\implies u(x,t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}U(\alpha,t)e^{i\alpha x}d\alpha[/tex]
[tex]=\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}e^{-i\alpha x}e^{-k^{2}\alpha^{2}t}d\alpha=\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}\cos\alpha xe^{-k^{2}\alpha^{2}t}d\alpha-i\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}\sin\alpha xe^{-k^{2}\alpha^{2}t}d\alpha[/tex]
My question here is:
in my notes he immediately says that in the final equality I have above that the sin(alpha)/alphacos(alpha)x term inside the integral is an even function whereas the sin(alpha)/alphasinalphax term is odd...how is it that he can so easily see which terms are odd and even and so evaluate the odd integral as zero?
having solved the heat equation in infinite domain in terms of U(alpha,t) we now want to inverse transform back to u(x,t):
[tex]U(\alpha,t)=\frac{2u_{0}}{\sqrt{2\pi}}\frac{sin\alpha}{\alpha}e^{-k^{2}\alpha^{2}t}[/tex]
[tex]\implies u(x,t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}U(\alpha,t)e^{i\alpha x}d\alpha[/tex]
[tex]=\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}e^{-i\alpha x}e^{-k^{2}\alpha^{2}t}d\alpha=\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}\cos\alpha xe^{-k^{2}\alpha^{2}t}d\alpha-i\frac{u_{0}}{\pi}\int_{-\infty}^{\infty}\frac{\sin\alpha}{\alpha}\sin\alpha xe^{-k^{2}\alpha^{2}t}d\alpha[/tex]
My question here is:
in my notes he immediately says that in the final equality I have above that the sin(alpha)/alphacos(alpha)x term inside the integral is an even function whereas the sin(alpha)/alphasinalphax term is odd...how is it that he can so easily see which terms are odd and even and so evaluate the odd integral as zero?