Relativistic Decay and Separation Between Moving Nuclei A and B

  • Thread starter Thread starter alex_ts
  • Start date Start date
AI Thread Summary
The discussion centers on the application of the relativistic velocity addition formula to analyze the decay and separation of moving nuclei A and B. The calculations involve the transformation of time and distance using Lorentz transformations, specifically addressing the variables Dta and dab. Concerns are raised about the clarity of the mathematical presentation, suggesting the use of LaTeX for better readability. Additionally, there is a critique regarding the inconsistency in using the Lorentz factor γa while applying the relative speed uab in the transformation equations. The overall conclusion is that the solution presented may contain errors that need to be addressed for accuracy.
alex_ts
Messages
1
Reaction score
0
Homework Statement
From the stationary position of the observed O, two nuclei of atoms A and B are launched simultaneously, which move (with respect to O) in the same direction with corresponding constant relativistic velocities ua=ac and ub=bc. c denotes the speed of light and for the constants a and b it is valid that 0<a<b<1. Observer O found that after time t, the two nuclei split simultaneously.

What is the time interval between the decays of the two nuclei with respect to nucleus A? What was the distance (relative to A) between nuclei A and B when A detected the fission of B?
Relevant Equations
uba=(ub-ua)/(1-uaub/c^2)

Dta=γa(tb-uba*xba/c^2) =>Dta=γa(t-uba*uba*t/c^2)=>Dta=γat(1-uba^2/c^2)

γ=1/(1-(u/c)^2)^1/2
The relative velocity of nucleus B with respect to nucleus A is given by the relativistic velocity addition formula:
uba=(ub-ua)/(1-uaub/c^2)

Dta=γa(tb-uba*xba/c^2) =>Dta=γa(t-uba*uba*t/c^2)=>Dta=γat(1-uba^2/c^2)
γa=1/(1-a^2)^(1/2)

and and we can replace uba with their respective expression.
And the distance at the moment of detection is: dab=uba*Dta and and we can replace uab and Dta with their respective expressions.

Is my solution correct?
 
Physics news on Phys.org
Your work is kind of hard to read. It would be easier to follow if you typeset the math using LaTeX.

Anyway, your solution doesn't look correct to me because you're using ##\gamma_a## in the Lorentz transformation but using ##u_{ba}## as the relative speed of the two frames.
 
  • Like
Likes SammyS and TSny
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top