Relativistic energy/momentum, massless particles

Click For Summary
In the decay of a pion at rest into a muon and an antineutrino, the conservation of energy and momentum must be applied. The total energy of the pion is 139.57 MeV, while the mass of the muon is 105.66 MeV, leading to an initial calculation for the antineutrino's energy of 33.91 MeV. However, to accurately determine the muon's energy, the relativistic energy-momentum relation (E^2 = (pc)^2 + (mc^2)^2) must be used. After applying the correct equations, the momentum of the muon is found to be 29.79 MeV/c, resulting in energies of 109.78 MeV for the muon and 29.79 MeV for the antineutrino, which conserves the total energy of the system. This analysis confirms the correct application of relativistic principles in particle decay.
zippideedoda
Messages
2
Reaction score
0

Homework Statement



A pion at rest decays into a muon and an antineutrino. The mass of the antineutrino is zero, find the energies and momenta of the muon and antineutrino. Mass of the pion is 139.57 MeV/c^2 and the mass of the muon is 105.66 MeV/c^2

Homework Equations



pion -> muon + antineutrino

(1) E=mc^2
(2) E=pc
(3) E^2 = (pc)^2 + (mc^2)^2

The Attempt at a Solution



Conservation of energy: E(pion) = E(muon) + E(antineutrino)
Using equation 1 and the given masses:
E(pion) = 139.57 MeV
E(muon) = 105.66 MeV (?)
so E(antineutrino) = E(pion) - E(muon) = 33.91 MeV
Use equation 2 for the massless antineutrino and get p = 33.91 MeV/c

since momentum is conserved and p(pion) = 0 (at rest),
p(muon) = -p(antineutrino) = -33.91 MeV/c

I don't think I'm right because if the muon has momentum it is moving and thus I can't find its energy by simply plugging its mass into equation 1.

Thanks for any help.
 
Last edited:
Physics news on Phys.org
You are correct in that you can't use Equation 1 for the energy of the muon. You have to use Equation 3. Otherwise you are on target.
 
How about this:

p(muon) = p(antineutrino) = p
E(antineutrino) = pc
E(muon) = sqrt[(pc)^2+(mc^2)^2]

plug these into conservation of E and solve for p
after some math I get

p = 29.79 MeV/c
so E(antineutrino) = 29.79 MeV
E(muon) = 109.78 MeV

The two E's add up to equal E(pion), 139.57
 
Looks good to me.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
10K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K