- #1
Jdo300
- 554
- 5
Hello All,
I was recently looking into explanations for the operation of Faraday's unipolar generator and came across the following article, titled "The Unipolar Generator, A Demonstration of Special Relativity" published by a professor at the University of Maryland:
http://www.physics.umd.edu/lecdem/outreach/QOTW/arch11/q218unipolar.pdf
I'm an EE, though I am also very interested in physics. This article really intrigues me because I am wondering how special relativity is playing such a powerful role in the operation of a unipolar generator when the disk isn't spinning anywhere near relativistic velocities?
One question I have: Do relativistic effects manifest more strongly when dealing with microscopic things compared to the macroscopic things (as in charge distributions, etc)? Does the scale of an observed interaction play a role (microscopic vs. macroscopic reference frames)? Intuitively, I would expect that the disk would need to be rotating at some significant fraction of the speed of light to see measurable differences in charge distribution, but why is the manifestation so strong in this case?
Thanks,
Jason O
I was recently looking into explanations for the operation of Faraday's unipolar generator and came across the following article, titled "The Unipolar Generator, A Demonstration of Special Relativity" published by a professor at the University of Maryland:
http://www.physics.umd.edu/lecdem/outreach/QOTW/arch11/q218unipolar.pdf
I'm an EE, though I am also very interested in physics. This article really intrigues me because I am wondering how special relativity is playing such a powerful role in the operation of a unipolar generator when the disk isn't spinning anywhere near relativistic velocities?
One question I have: Do relativistic effects manifest more strongly when dealing with microscopic things compared to the macroscopic things (as in charge distributions, etc)? Does the scale of an observed interaction play a role (microscopic vs. macroscopic reference frames)? Intuitively, I would expect that the disk would need to be rotating at some significant fraction of the speed of light to see measurable differences in charge distribution, but why is the manifestation so strong in this case?
Thanks,
Jason O
Last edited by a moderator: