- #1
lriuui0x0
- 101
- 25
According to this link here https://en.wikipedia.org/wiki/Relativistic_mechanics#Force , we can inverse the relation of force in terms of velocity and acceleration:
$$
\mathbf{F} = \frac{m\gamma^3}{c^2}(\mathbf{v} \cdot \mathbf{a})\mathbf{v} + m\gamma\mathbf{a}
$$
to get:
$$
\mathbf{a} = \frac{1}{m\gamma}(\mathbf{F} - \frac{(\mathbf{v}\cdot\mathbf{F})\mathbf{v}}{c^2})
$$
I'm not sure how this derivation is done, especially how to inverse the ##\mathbf{v}\cdot\mathbf{a}## term.
$$
\mathbf{F} = \frac{m\gamma^3}{c^2}(\mathbf{v} \cdot \mathbf{a})\mathbf{v} + m\gamma\mathbf{a}
$$
to get:
$$
\mathbf{a} = \frac{1}{m\gamma}(\mathbf{F} - \frac{(\mathbf{v}\cdot\mathbf{F})\mathbf{v}}{c^2})
$$
I'm not sure how this derivation is done, especially how to inverse the ##\mathbf{v}\cdot\mathbf{a}## term.
Last edited: