- #1
Daniel5423
- 3
- 0
I'm reading modern physics, Tipler 5th edition, pages 21 and 22, and I'm not understanding how the differentiation was done from the position to find the velocity.
Equation for position: x'= y(x - vt)
y is the gamma constant.
Then in the first step to find the velocity, a derivative was done:
dx'= y(dx - vdt)From the above equation, it was used to find the relativistic equation for velocity, and I understand that part. but what I don't understand is what the differential operator was is in the derivative, such as something like d/dt. If I take d/dt to both sides of the equation, then I do not see how the above equation was found. Could someone please explain to me what the differential operator was used to find the above equation? Thanks.
Equation for position: x'= y(x - vt)
y is the gamma constant.
Then in the first step to find the velocity, a derivative was done:
dx'= y(dx - vdt)From the above equation, it was used to find the relativistic equation for velocity, and I understand that part. but what I don't understand is what the differential operator was is in the derivative, such as something like d/dt. If I take d/dt to both sides of the equation, then I do not see how the above equation was found. Could someone please explain to me what the differential operator was used to find the above equation? Thanks.