- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the function $f (x) = e^{\lambda x}$ on an interval $[a, b] , \ \lambda \in \mathbb{R}$.
I want to show that the remainder $R_n (x) = f (x)- p_n (x)$ at the lagrange interpolation of $f (x)$ with $n+1$ points from $[a, b]$ for $n \rightarrow \infty$ converges uniformly to $0$.
For each $n$ the points can be chosen arbitrarily in $[a, b]$.
The remainder is defined as $\displaystyle{R_n(x)=f(x)-p_n(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\prod_{i=0}^n(x-x_i)=\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\prod_{i=0}^n(x-x_i)}$, right?
Then we have the following:
$\displaystyle{|R_n(x)|=|f(x)-p_n(x)|=\left |\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\prod_{i=0}^n(x-x_i)\right |=\left |\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\right |\prod_{i=0}^n|x-x_i|}\\ \displaystyle{\leq \frac{|\lambda|^{n+1}\sup_{\xi_x\in [a,b]}e^{\lambda \xi_x}}{(n+1)!} \cdot \sup_{x\in [a,b]}\prod_{i=0}^n|x-x_i|}$
right?
How could we continue? (Wondering)
We have the function $f (x) = e^{\lambda x}$ on an interval $[a, b] , \ \lambda \in \mathbb{R}$.
I want to show that the remainder $R_n (x) = f (x)- p_n (x)$ at the lagrange interpolation of $f (x)$ with $n+1$ points from $[a, b]$ for $n \rightarrow \infty$ converges uniformly to $0$.
For each $n$ the points can be chosen arbitrarily in $[a, b]$.
The remainder is defined as $\displaystyle{R_n(x)=f(x)-p_n(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\prod_{i=0}^n(x-x_i)=\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\prod_{i=0}^n(x-x_i)}$, right?
Then we have the following:
$\displaystyle{|R_n(x)|=|f(x)-p_n(x)|=\left |\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\prod_{i=0}^n(x-x_i)\right |=\left |\frac{\lambda^{n+1}e^{\lambda \xi_x}}{(n+1)!}\right |\prod_{i=0}^n|x-x_i|}\\ \displaystyle{\leq \frac{|\lambda|^{n+1}\sup_{\xi_x\in [a,b]}e^{\lambda \xi_x}}{(n+1)!} \cdot \sup_{x\in [a,b]}\prod_{i=0}^n|x-x_i|}$
right?
How could we continue? (Wondering)