- #1
theittsco
- 1
- 4
- TL;DR Summary
- Confusion on how to renormalize a loop diagram with only a single vertex. Feynman parameters don't work.
Trying to solve for the loop contribution when renormalizing a one loop ##\frac{\lambda}{4!}\phi^4## diagram with two external lines in ##d=4## dimensions. After writing down the Feynman rule I see that:
$$\frac{(-i\lambda)}{2}\int d^4q \frac{i}{q^2-m_{\phi}^2+i\epsilon} $$
But I see no way to convert this to Feynman parameters like in ##1/AB##. When I Wick rotate I get:
$$\frac{(\lambda)}{2}\int dq_E \frac{q_E^3}{q_E^2-m_{\phi}^2} $$
Which when integrated from ##0,\Lambda## (a hard cut off) via the great Mathematica yields:
$$\lambda/2 (1/2)(\Lambda^2-m^2\log(-m^2)+m^2\log(\Lambda^2-m^2))$$
My renormalization conditions are ##\Pi(m^2)=\Pi'(m^2)=0##, so when solving for counter terms:
$$i\Pi(p^2) = \lambda/2 (1/2)(\Lambda^2-m^2\log(-m^2)+m^2\log(\Lambda^2-m^2)) + i(\delta_Zp^2-\delta_m)$$
my counter terms still end up with ##\Lambda## dependence. So I messed up somewhere but I can't figure out where. Help please!
$$\frac{(-i\lambda)}{2}\int d^4q \frac{i}{q^2-m_{\phi}^2+i\epsilon} $$
But I see no way to convert this to Feynman parameters like in ##1/AB##. When I Wick rotate I get:
$$\frac{(\lambda)}{2}\int dq_E \frac{q_E^3}{q_E^2-m_{\phi}^2} $$
Which when integrated from ##0,\Lambda## (a hard cut off) via the great Mathematica yields:
$$\lambda/2 (1/2)(\Lambda^2-m^2\log(-m^2)+m^2\log(\Lambda^2-m^2))$$
My renormalization conditions are ##\Pi(m^2)=\Pi'(m^2)=0##, so when solving for counter terms:
$$i\Pi(p^2) = \lambda/2 (1/2)(\Lambda^2-m^2\log(-m^2)+m^2\log(\Lambda^2-m^2)) + i(\delta_Zp^2-\delta_m)$$
my counter terms still end up with ##\Lambda## dependence. So I messed up somewhere but I can't figure out where. Help please!
Last edited: