- #1
QFT1995
- 30
- 1
If I have a wavefunction ##\Psi(X)## that is invariant under the group ##Z_2##, what specifically does that mean? There can be several operators that are representations of the group ##Z_2##, for example the operators
$$\mathbb{Z}_2=\{ \mathbb{I}, -\mathbb{I} \},$$
or
$$\mathbb{Z}_2=\{ \mathbb{I}, \hat{\Pi} \},$$
where ##\hat{\Pi}## is the parity operators with the action ##\hat{\Pi}: \Psi(X) \mapsto \Psi(-X)##. My question is, which one is it? Also, say if I have the 2 component wave-function, the following also produce a representation of ##Z_2##
$$
\mathbb{Z}_2^A=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
\hat{\Pi} & 0\\
0& \hat{\Pi}
\end{pmatrix} \bigg\},
$$
or
$$
\mathbb{Z}_2^B=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
0 & \hat{\Pi}\\
\hat{\Pi}&0
\end{pmatrix} \bigg\}.
$$
My question is, how do you determine which one is correct when people state that the wavefunction is invariant under ##Z_2## since a wavfunction invariant under ##Z_2^A## isn't necessarily invariant under ##Z_2^B##, however they are both representations of ##Z_2##.
$$\mathbb{Z}_2=\{ \mathbb{I}, -\mathbb{I} \},$$
or
$$\mathbb{Z}_2=\{ \mathbb{I}, \hat{\Pi} \},$$
where ##\hat{\Pi}## is the parity operators with the action ##\hat{\Pi}: \Psi(X) \mapsto \Psi(-X)##. My question is, which one is it? Also, say if I have the 2 component wave-function, the following also produce a representation of ##Z_2##
$$
\mathbb{Z}_2^A=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
\hat{\Pi} & 0\\
0& \hat{\Pi}
\end{pmatrix} \bigg\},
$$
or
$$
\mathbb{Z}_2^B=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
0 & \hat{\Pi}\\
\hat{\Pi}&0
\end{pmatrix} \bigg\}.
$$
My question is, how do you determine which one is correct when people state that the wavefunction is invariant under ##Z_2## since a wavfunction invariant under ##Z_2^A## isn't necessarily invariant under ##Z_2^B##, however they are both representations of ##Z_2##.