- #1
Jhenrique
- 685
- 4
If exist 3 representations for Fourier series (sine/cosine, exponential and amplite/phase) and at least two Fourier integral that I know
[tex]f(t)=\int_{0}^{\infty }A(\omega)cos(\omega t) + B(\omega)sin(\omega t)d\omega[/tex]
[tex]f(t)=\int_{-\infty }^{+\infty }\frac{e^{+i\omega t}}{\sqrt{2\pi}} F(\omega)d\omega[/tex]
So, exist too a representation for Fourier integral in amplitude/phase notation? How is it?
Other question: ##A(\omega)## and ##B(\omega)## are the sine and cosine transforms?
And another ask: I can relates F(ω) with A(ω) and B(ω), like we do in series Fourier ##\left (|c_{n}|=\frac{1}{2}\sqrt{a_{n}^{2} + b_{n}^{2}} \right )##?
[tex]f(t)=\int_{0}^{\infty }A(\omega)cos(\omega t) + B(\omega)sin(\omega t)d\omega[/tex]
[tex]f(t)=\int_{-\infty }^{+\infty }\frac{e^{+i\omega t}}{\sqrt{2\pi}} F(\omega)d\omega[/tex]
So, exist too a representation for Fourier integral in amplitude/phase notation? How is it?
Other question: ##A(\omega)## and ##B(\omega)## are the sine and cosine transforms?
And another ask: I can relates F(ω) with A(ω) and B(ω), like we do in series Fourier ##\left (|c_{n}|=\frac{1}{2}\sqrt{a_{n}^{2} + b_{n}^{2}} \right )##?