- #1
pantboio
- 45
- 0
Consider the function
$$f(z)=\frac{e^{\frac{1}{z-1}}}{e^z -1}$$
$z_0=1$ is an essential singularity, hence
$$f(z)=\displaystyle\sum_{-\infty}^{+\infty}a_n(z-1)^n$$
near to $z_0=1$ and i want to find $a_{-1}$. I can write
$$f(z)=\frac{\sum\frac{1}{n!(z-1)^n}}{e\cdot e^{z-1}-1}=\frac{1+\frac{1}{z-1}+\frac{1}{2!(z-1)^2}+\ldots}{e-1+e(z-1)+e\frac{(z-1)^2}{2!}+\ldots}$$
and now, how can i find the coefficient of $\frac{1}{z-1}$? Can someone help me?
$$f(z)=\frac{e^{\frac{1}{z-1}}}{e^z -1}$$
$z_0=1$ is an essential singularity, hence
$$f(z)=\displaystyle\sum_{-\infty}^{+\infty}a_n(z-1)^n$$
near to $z_0=1$ and i want to find $a_{-1}$. I can write
$$f(z)=\frac{\sum\frac{1}{n!(z-1)^n}}{e\cdot e^{z-1}-1}=\frac{1+\frac{1}{z-1}+\frac{1}{2!(z-1)^2}+\ldots}{e-1+e(z-1)+e\frac{(z-1)^2}{2!}+\ldots}$$
and now, how can i find the coefficient of $\frac{1}{z-1}$? Can someone help me?
Last edited: