- #1
Dustinsfl
- 2,281
- 5
\[
\int_0^{\infty}\frac{x\sin(mx)}{x^2 + a^2}dx = \frac{\pi}{2}e^{-am}
\]
The inetgral is even so
\[
\frac{1}{2}\int_{-\infty}^{\infty}\frac{x\sin(mx)}{x^2 + a^2}dx.
\]
We can also write \(x^2 + a^2\) as \((x + ai)(x - ai)\). Should I also write \(\sin(mx) = \frac{1}{2i}(z^m - 1/z^m)\)? I tried this but it didn't go anywhere.
\[
\frac{1}{2}\int_{-\infty}^{\infty}\frac{z\sin(mx)}{(z + ai)(z - ai)}dz.
\]
How do I finish this problem?
\int_0^{\infty}\frac{x\sin(mx)}{x^2 + a^2}dx = \frac{\pi}{2}e^{-am}
\]
The inetgral is even so
\[
\frac{1}{2}\int_{-\infty}^{\infty}\frac{x\sin(mx)}{x^2 + a^2}dx.
\]
We can also write \(x^2 + a^2\) as \((x + ai)(x - ai)\). Should I also write \(\sin(mx) = \frac{1}{2i}(z^m - 1/z^m)\)? I tried this but it didn't go anywhere.
\[
\frac{1}{2}\int_{-\infty}^{\infty}\frac{z\sin(mx)}{(z + ai)(z - ai)}dz.
\]
How do I finish this problem?